62,722 research outputs found

    Why Customers Value Mass-customized Products: The Importance of Process Effort and Enjoyment

    Get PDF
    We test our hypotheses on 186 participants designing their own scarves with an MC toolkit. After completing the process, they submitted binding bids for "their" products in Vickrey auctions. We therefore observe real buying behavior, not merely stated intentions. We find that the subjective value of a self-designed product (i.e., one's bid in the course of the auction) is indeed not only impacted by the preference fit the customer expects it to deliver, but also by (1) the process enjoyment the customer reports, (2) the interaction of preference fit and process enjoyment, and (3) the interaction of preference fit and perceived process effort. In addition to its main effect, we interpret preference fit as a moderator of the valuegenerating effect of process evaluation: In cases where the outcome of the process is perceived as positive (high preference fit), the customer also interprets process effort as a positive accomplishment, and this positive affect adds (further) value to the product. It appears that the perception of the self-design process as a good or bad experience is partly constructed on the basis of the outcome of the process. In the opposite case (low preference fit), effort creates a negative affect which further reduces the subjective value of the product. Likewise, process enjoyment is amplified by preference fit, although enjoyment also has a significant main effect, which means that regardless of the outcome, customers attribute higher value to a self-designed product if they enjoy the process. The importance of the self-design process found in this study bears clear relevance for companies which offer or plan to offer MC systems. It is not sufficient to design MC toolkits in such a way that they allow customers to design products according to their preferences. The affect caused by this process is also highly important. Toolkits should therefore stimulate positive affective reactions and at the same time keep negative affect to a minimum. (authors' abstract

    Fuzzy Recommendations in Marketing Campaigns

    Full text link
    The population in Sweden is growing rapidly due to immigration. In this light, the issue of infrastructure upgrades to provide telecommunication services is of importance. New antennas can be installed at hot spots of user demand, which will require an investment, and/or the clientele expansion can be carried out in a planned manner to promote the exploitation of the infrastructure in the less loaded geographical zones. In this paper, we explore the second alternative. Informally speaking, the term Infrastructure-Stressing describes a user who stays in the zones of high demand, which are prone to produce service failures, if further loaded. We have studied the Infrastructure-Stressing population in the light of their correlation with geo-demographic segments. This is motivated by the fact that specific geo-demographic segments can be targeted via marketing campaigns. Fuzzy logic is applied to create an interface between big data, numeric methods for processing big data and a manager.Comment: conferenc

    Phase Diagram for Ultracold Bosons in Optical Lattices and Superlattices

    Full text link
    We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model, successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on a standard statistical mechanics approach, we provide the exact expression for the boundary between the superfluid and the normal fluid by solving the self-consistency equations involved in the mean-field approximation to the Bose-Hubbard model. The zero-temperature limit of such result supplies an analytic expression for the Mott lobes of superlattices, characterized by a critical fractional filling.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    The Economic Rationale for Agricultural Regeneration and Rural Infrastructure Investment in South Africa

    Get PDF
    This paper informs government policy insofar as it relates to the agricultural and rural development sectors and infrastructure investment within these sectors. The paper first quantifies the role of agriculture in the South African economy. This is done within the context of, inter alia, food security, agriculture’s contribution to gross domestic product (GDP), economic linkages and multipliers with respect to the agricultural sector, as well as agriculture’s employment creation and external stabilisation capacity. Investment in the agricultural and rural sectors are then analysed with a view of supporting the argument that agriculture’s role in the economy is sufficiently important to warrant regenerative strategies, including renewed emphasis on agricultural and rural infrastructure investment by South African policy makers. The quantification of the agricultural sector in relation to the total economy and that of agricultural and rural infrastructure investment are investigated against the backdrop of declining government support, increasing production risks due to a variety of exogenous events like climate change, and increasing dynamic trade impacts. In this paper, the authors offer both supporting arguments in terms of current economic policy and recommendations for more decisive policy measures aimed at agricultural regeneration and rural infrastructure investment.

    A Na I Absorption Map of the Small-Scale Structure in the Interstellar Gas Toward M15

    Get PDF
    Using the DensePak fiber optic array on the KPNO WIYN telescope, we have obtained high S/N echelle spectra of the Na I D wavelength region toward the central 27" x 43" of the globular cluster M15 at a spatial resolution of 4". The spectra exhibit significant interstellar Na I absorption at LSR velocities of +3 km/s (LISM component) and +68 km/s (IVC component). Both components vary appreciably in strength on these scales. The derived Na I column densities differ by a factor of 4 across the LISM absorption map and by a factor of 16 across the IVC map. Assuming distances of 500 pc and 1500 pc for the LISM and IVC clouds, these maps show evidence of significant ISM structure down to the minimum scales of 2000 AU and 6000 AU probed in these absorbers. The smallest-scale N(Na I) variations observed in the M15 LISM and IVC maps are typically comparable to or higher than the values found at similar scales in previous studies of interstellar Na I structure toward binary stars. The physical implications of the small and larger-scale Na I features observed in the M15 maps are discussed in terms of variations in the H I column density as well as in the Na ionization equilibrium.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter

    Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy

    Full text link
    We study the evolution of a V-type three-level system, whose two resonances are coherently excited and coupled by two ultrashort laser pump and probe pulses, separated by a varying time delay. We relate the quantum dynamics of the excited multi-level system to the absorption spectrum of the transmitted probe pulse. In particular, by analyzing the quantum evolution of the system, we interpret how atomic phases are differently encoded in the time-delay-dependent spectral absorption profiles when the pump pulse either precedes or follows the probe pulse. We experimentally apply this scheme to atomic Rb, whose fine-structure-split 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{1/2} and 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{3/2} transitions are driven by the combined action of a pump pulse of variable intensity and a delayed probe pulse. The provided understanding of the relationship between quantum phases and absorption spectra represents an important step towards full time-dependent phase reconstruction (quantum holography) of bound-state wave-packets in strong-field light-matter interactions with atoms, molecules and solids.Comment: 5 pages, 4 figure

    The Interstellar N/O Abundance Ratio: Evidence for Local Infall?

    Full text link
    Sensitive measurements of the interstellar gas-phase oxygen abundance have revealed a slight oxygen deficiency (\sim 15%) toward stars within 500 pc of the Sun as compared to more distant sightlines. Recent FUSEFUSE observations of the interstellar gas-phase nitrogen abundance indicate larger variations, but no trends with distance were reported due to the significant measurement uncertainties for many sightlines. By considering only the highest quality (\geq 5 σ\sigma) N/O abundance measurements, we find an intriguing trend in the interstellar N/O ratio with distance. Toward the seven stars within \sim 500 pc of the Sun, the weighted mean N/O ratio is 0.217 ±\pm 0.011, while for the six stars further away the weighted mean value (N/O = 0.142 ±\pm 0.008) is curiously consistent with the current Solar value (N/O = 0.1380.18+0.20^{+0.20}_{-0.18}). It is difficult to imagine a scenario invoking environmental (e.g., dust depletion, ionization, etc.) variations alone that explains this abundance anomaly. Is the enhanced nitrogen abundance localized to the Solar neighborhood or evidence of a more widespread phenomenon? If it is localized, then recent infall of low metallicity gas in the Solar neighborhood may be the best explanation. Otherwise, the N/O variations may be best explained by large-scale differences in the interstellar mixing processes for AGB stars and Type II supernovae.Comment: accepted for publication in the Astrophysical Journal Letter

    Heavy Meson Production in NN Collisions with Polarized Beam and Target -- A new facility for COSY

    Full text link
    The study of near--threshold meson production in pp and pd collisions involving polarized beams and polarized targets offers the rare opportunity to gain insight into short--range features of the nucleon--nucleon interaction. The Cooler Synchrotron COSY at FZ--J\"ulich is a unique environment to perform such studies. Measurements of polarization observables require a cylindrically symmetrical detector, capable to measure the momenta and the directions of outgoing charged hadrons. The wide energy range of COSY leads to momenta of outgoing protons to be detected in a single meson production reaction between 300 and 2500 MeV/c. Scattering angles of protons to be covered extend to about 4545^{\circ} in the laboratory system. An azimuthal angular coverage of the device around 98% seems technically achievable. The required magnetic spectrometer could consist of a superconducting toroid, providing fields around 3 T.Comment: 6 pages, 1 figure, submitted to Czechoslovak Journal of Physic
    corecore