61,607 research outputs found
Linear response in infinite nuclear matter as a tool to reveal finite size instabilities
Nuclear effective interactions are often modelled by simple analytical
expressions such as the Skyrme zero-range force. This effective interaction
depends on a limited number of parameters that are usually fitted using
experimental data obtained from doubly magic nuclei. It was recently shown that
many Skyrme functionals lead to the appearance of instabilities, in particular
when symmetries are broken, for example unphysical polarization of odd-even or
rotating nuclei. In this article, we show how the formalism of the linear
response in infinite nuclear matter can be used to predict and avoid the
regions of parameters that are responsible for these unphysical instabilities.Comment: Based on talk presented at 18th Nuclear Physics Workshop "Maria and
Pierre Curie", 2011, Kazimierz, Polan
Spontaneous Spin Polarization in Quantum Wires
A number of recent experiments report spin polarization in quantum wires in
the absence of magnetic fields. These observations are in apparent
contradiction with the Lieb-Mattis theorem, which forbids spontaneous spin
polarization in one dimension. We show that sufficiently strong interactions
between electrons induce deviations from the strictly one-dimensional geometry
and indeed give rise to a ferromagnetic ground state in a certain range of
electron densities.Comment: 4 pages, 4 figure
An analysis of B cell selection mechanisms in germinal centres
Affinity maturation of antibodies during immune responses is achieved by multiple rounds of somatic hypermutation and subsequent preferential selection of those B cells that express B cell receptors with improved binding characteristics for the antigen. The mechanism underlying B cell selection has not yet been defined. By employing an agent-based model, we show that for physiologically reasonable parameter values affinity maturation can be driven by competition for neither binding sites nor antigenâeven in the presence of competing secreted antibodies. Within the tested mechanisms, only clonal competition for T cell help or a refractory time for the interaction of centrocytes with follicular dendritic cells is found to enable affinity maturation while generating the experimentally observed germinal centre characteristics and tolerating large variations in the initial antigen density
Quasi-Experimental Evidence on the Effects of Unemployment Insurance from New York State
This paper examines unemployment duration and the incidence of claims following a 36 percent increase in the maximum weekly benefit in New York State. This benefit increase sharply increased benefits for a large group of claimants, while leaving them unchanged for a large share of claimants who provide a natural comparison group. The New York benefit increase has the special features that it was unexpected and applied to in-progress spells. These features allow the effects on duration to be convincingly separated from effects on incidence. The results show a sharp fall in the hazard of leaving UI that coincides with the increase in benefits. The evidence is also consistent with a substantial effect of the benefit level on the incidence of claims and with this change in incidence biasing duration estimates. The evidence further suggests that, at least in this case, standard methods that identify duration effects through nonlinearities in the benefit schedule are not badly biased.
Quantum Chinos Game: winning strategies through quantum fluctuations
We apply several quantization schemes to simple versions of the Chinos game.
Classically, for two players with one coin each, there is a symmetric stable
strategy that allows each player to win half of the times on average. A partial
quantization of the game (semiclassical) allows us to find a winning strategy
for the second player, but it is unstable w.r.t. the classical strategy.
However, in a fully quantum version of the game we find a winning strategy for
the first player that is optimal: the symmetric classical situation is broken
at the quantum level.Comment: REVTEX4.b4 file, 3 table
Analysis of B cell selection mechanisms in the adaptive immune response
The essential task of a germinal centre reaction is the selection of those B cells that bind the antigen with high affinity. The exact mechanisms of B cell selection is still unknown and rather difficult to be accessed in experiment. With the help of an already established agent-based model for the space-time-dynamics of germinal centre reactions [1,2] we compare the most important hypotheses for what the limiting factor for B cell rescue may be. We discuss competition for antigen sites on follicular dendritic cells, a refractory time for centrocytes after every encounter with follicular dendritic cells, competition for the antigen itself, the role of antigen masking with soluble antibodies, and competition for T cell help. The unexpected result is that neither competition for interaction sites nor competition for antigen nor antigen masking are in agreement with present experimental data on germinal centre reactions. We show that these most popular selection mechanisms do not lead to sufficient affinity maturation and do not respect the observed robustness against changes of initial conditions. However, the best agreement with data was found for the newly hypothesized centrocyte refractory time and for competition for T cell help. Thus the in silico experiments point towards selection mechanisms that are not in the main focus of current germinal centre research. Possible experiments to test these hypotheses are proposed
Electron-hole pairs during the adsorption dynamics of O2 on Pd(100) - Exciting or not?
During the exothermic adsorption of molecules at solid surfaces dissipation
of the released energy occurs via the excitation of electronic and phononic
degrees of freedom. For metallic substrates the role of the nonadiabatic
electronic excitation channel has been controversially discussed, as the
absence of a band gap could favour an easy coupling to a manifold of
electronhole pairs of arbitrarily low energies. We analyse this situation for
the highly exothermic showcase system of molecular oxygen dissociating at
Pd(100), using time-dependent perturbation theory applied to first-principles
electronic-structure calculations. For a range of different trajectories of
impinging O2 molecules we compute largely varying electron-hole pair spectra,
which underlines the necessity to consider the high-dimensionality of the
surface dynamical process when assessing the total energy loss into this
dissipation channel. Despite the high Pd density of states at the Fermi level,
the concomitant non-adiabatic energy losses nevertheless never exceed about 5%
of the available chemisorption energy. While this supports an electronically
adiabatic description of the predominant heat dissipation into the phononic
system, we critically discuss the non-adiabatic excitations in the context of
the O2 spin transition during the dissociation process.Comment: 20 pages including 7 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.html [added two references, changed
V_{fsa} to V_{6D}, modified a few formulations in interpretation of spin
asymmetry of eh-spectra, added missing equals sign in Eg.(2.10)
Revising old child support orders: The Wisconsin experience
In an effort to make Wisconsin's child support cases more equitable and up-to-date, child support staff reviewed "old" child support orders in thirteen of the state's seventy-two counties. (Reviewing old child support orders is now mandatory under the provisions of the Family Support Act of 1988.) Of the reviewed cases, only 21 percent were revised. Primary reasons for non-revision were the economic circumstances of the noncustodial parent (among welfare cases) and a lack of permission by the custodial parent to proceed (among non-welfare cases). Revised orders increased substantially, an average of $116/month (77 percent). An alternative method of keeping orders current is to express them as a percentage of the noncustodial parent's income; these orders are kept up-to-date automatically and are associated with large increases in collections.
Fitting Skyrme functionals using linear response theory
Recently, it has been recently shown that the linear response theory in
symmetric nuclear matter can be used as a tool to detect finite size
instabilities for different Skyrme functionals. In particular it has been shown
that there is a correlation between the density at which instabilities occur in
infinite matter and the instabilities in finite nuclei. In this article we
present a new fitting protocol that uses this correlation to add new additional
constraint in Symmetric Infinite Nuclear Matter in order to ensure the
stability of finite nuclei against matter fluctuation in all spin and isospin
channels. As an application, we give the parameters set for a new Skyrme
functional which includes central and spin-orbit parts and which is free from
instabilities by construction.Comment: Proceeding of 19th Nuclear Physics Workshop "Marie & Pierre Curie"
Kazimierz 201
Life prediction and constitutive models for engine hot section anisotropic materials program
This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed
- âŠ