2,722 research outputs found
Entanglement Dynamics in 1D Quantum Cellular Automata
Several proposed schemes for the physical realization of a quantum computer
consist of qubits arranged in a cellular array. In the quantum circuit model of
quantum computation, an often complex series of two-qubit gate operations is
required between arbitrarily distant pairs of lattice qubits. An alternative
model of quantum computation based on quantum cellular automata (QCA) requires
only homogeneous local interactions that can be implemented in parallel. This
would be a huge simplification in an actual experiment. We find some minimal
physical requirements for the construction of unitary QCA in a 1 dimensional
Ising spin chain and demonstrate optimal pulse sequences for information
transport and entanglement distribution. We also introduce the theory of
non-unitary QCA and show by example that non-unitary rules can generate
environment assisted entanglement.Comment: 12 pages, 8 figures, submitted to Physical Review
Post-discharge follow-up of stroke patients at Groote Schuur Hospital - a prospective study
A survey of 59 stroke patients was undertaken between 3 and 6 months after the event to determine whether a weekly stroke round would improve the rate of referral for rehabilitation. Comparison with a previous survey at Groote Schuur Hospital showed a marked improvement (40% for physiotherapy and 10% for occupational therapy v. 76% and 50% respectively). A comparison of referral rates between younger « 65 years old) and older patients (> 65 years old) revealed a significantly higher rate of referral among the younger patients. Attendance for both groups was low (approx. 7 sessions per 3 months). Social work was an important requirement and 60% of all patients expressed a need for more help. Social needs of older and younger patients differ. Despite the improved referral rate the rehabilitation of stroke patients is unsatisfactory, mainly because of transport difficulties. Methods should be investigated to establish rehabilitation centres in the community to overcome this impasse
The quantum to classical transition for random walks
We look at two possible routes to classical behavior for the discrete quantum
random walk on the line: decoherence in the quantum ``coin'' which drives the
walk, or the use of higher-dimensional coins to dilute the effects of
interference. We use the position variance as an indicator of classical
behavior, and find analytical expressions for this in the long-time limit; we
see that the multicoin walk retains the ``quantum'' quadratic growth of the
variance except in the limit of a new coin for every step, while the walk with
decoherence exhibits ``classical'' linear growth of the variance even for weak
decoherence.Comment: 4 pages RevTeX 4.0 + 2 figures (encapsulated Postscript). Trimmed for
length. Minor corrections + one new referenc
Quantum random walks with decoherent coins
The quantum random walk has been much studied recently, largely due to its
highly nonclassical behavior. In this paper, we study one possible route to
classical behavior for the discrete quantum walk on the line: the presence of
decoherence in the quantum ``coin'' which drives the walk. We find exact
analytical expressions for the time dependence of the first two moments of
position, and show that in the long-time limit the variance grows linearly with
time, unlike the unitary walk. We compare this to the results of direct
numerical simulation, and see how the form of the position distribution changes
from the unitary to the usual classical result as we increase the strength of
the decoherence.Comment: Minor revisions, especially in introduction. Published versio
Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?
The STEREO/WAVES instrument has detected a very large number of intense
voltage pulses. We suggest that these events are produced by impact ionisation
of nanoparticles striking the spacecraft at a velocity of the order of
magnitude of the solar wind speed. Nanoparticles, which are half-way between
micron-sized dust and atomic ions, have such a large charge-to-mass ratio that
the electric field induced by the solar wind magnetic field accelerates them
very efficiently. Since the voltage produced by dust impacts increases very
fast with speed, such nanoparticles produce signals as high as do much larger
grains of smaller speeds. The flux of 10-nm radius grains inferred in this way
is compatible with the interplanetary dust flux model. The present results may
represent the first detection of fast nanoparticles in interplanetary space
near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure
Discrete-time quantum walks on one-dimensional lattices
In this paper, we study discrete-time quantum walks on one-dimensional
lattices. We find that the coherent dynamics depends on the initial states and
coin parameters. For infinite size of lattice, we derive an explicit expression
for the return probability, which shows scaling behavior
and does not depends on the initial states of the walk. In the long-time limit,
the probability distribution shows various patterns, depending on the initial
states, coin parameters and the lattice size. The average mixing time
closes to the limiting probability in linear (size of the
lattice) for large values of thresholds . Finally, we introduce
another kind of quantum walk on infinite or even-numbered size of lattices, and
show that the walk is equivalent to the traditional quantum walk with
symmetrical initial state and coin parameter.Comment: 17 pages research not
Comment on "Role of heavy meson exchange in near threshold N N --> d pi"
In a recent paper by C. J. Horowitz (Phys. Rev. C {\bf 48}, 2920 (1993)) a
heavy meson exchange is incorporated into threshold NN --> d pi to enhance the
grossly underestimated cross section. However, that calculation uses an
unjustified assumption on the initial and final momenta, which causes an
overestimate of this effect by a factor of 3--4. I point out that the inclusion
of the Delta(1232) isobar increases the cross section significantly even at
threshold.Comment: 7 pages, figures by fax or mail from [email protected]
On the relationship between continuous- and discrete-time quantum walk
Quantum walk is one of the main tools for quantum algorithms. Defined by
analogy to classical random walk, a quantum walk is a time-homogeneous quantum
process on a graph. Both random and quantum walks can be defined either in
continuous or discrete time. But whereas a continuous-time random walk can be
obtained as the limit of a sequence of discrete-time random walks, the two
types of quantum walk appear fundamentally different, owing to the need for
extra degrees of freedom in the discrete-time case.
In this article, I describe a precise correspondence between continuous- and
discrete-time quantum walks on arbitrary graphs. Using this correspondence, I
show that continuous-time quantum walk can be obtained as an appropriate limit
of discrete-time quantum walks. The correspondence also leads to a new
technique for simulating Hamiltonian dynamics, giving efficient simulations
even in cases where the Hamiltonian is not sparse. The complexity of the
simulation is linear in the total evolution time, an improvement over
simulations based on high-order approximations of the Lie product formula. As
applications, I describe a continuous-time quantum walk algorithm for element
distinctness and show how to optimally simulate continuous-time query
algorithms of a certain form in the conventional quantum query model. Finally,
I discuss limitations of the method for simulating Hamiltonians with negative
matrix elements, and present two problems that motivate attempting to
circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian
oracles; v3: published version, with improved analysis of phase estimatio
Playing a quantum game with a corrupted source
The quantum advantage arising in a simplified multi-player quantum game, is
found to be a disadvantage when the game's qubit-source is corrupted by a noisy
"demon". Above a critical value of the corruption-rate, or noise-level, the
coherent quantum effects impede the players to such an extent that the optimal
choice of game changes from quantum to classical.Comment: This version will appear in PRA (Rapid Comm.
- …