52 research outputs found

    Bacterial dominance is due to effective utilisation of secondary metabolites produced by competitors.

    Get PDF
    Interactions between bacteria govern the progression of respiratory infections; however, the mechanisms underpinning these interactions are still unclear. Understanding how a bacterial species comes to dominate infectious communities associated with respiratory infections has direct relevance to treatment. In this study, Burkholderia, Pseudomonas, and Staphylococcus species were isolated from the sputum of an individual with Cystic Fibrosis and assembled in a fully factorial design to create simple microcosms. Measurements of growth and habitat modification were recorded over time, the later using proton Nuclear Magnetic Resonance spectra. The results showed interactions between the bacteria became increasingly neutral over time. Concurrently, the bacteria significantly altered their ability to modify the environment, with Pseudomonas able to utilise secondary metabolites produced by the other two isolates, whereas the reverse was not observed. This study indicates the importance of including data about the habitat modification of a community, to better elucidate the mechanisms of bacterial interactions

    Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE

    Get PDF
    Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3- and 4-pyridylmethylpiperidine (2-PMP, 3-PMP and 4-PMP respectively) were subjected to the hyperpolarisation technique SABRE (Signal Amplification By Reversible Exchange) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold respectively in a 1.4 T detection field, following polarisation transfer at earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of three equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (ca. 20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary GC-MS data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present

    Delivering strong 1H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange

    Get PDF
    Hyperpolarization turns typically weak NMR and MRI responses into strong signals so that ordinarily impractical measurements become possible. The potential to revolutionize analytical NMR and clinical diagnosis through this approach reflect this area's most compelling outcomes. Methods to optimize the low cost parahydrogen based approach signal amplification by reversible exchange (SABRE) with studies on a series of biologically relevant nicotinamides and methyl nicotinates are detailed. These procedures involve specific 2H-labelling in both the agent and catalyst and achieve polarization lifetimes of ca. 2 minutes with 50% polarization in the case of 4,6-d2-methylnicotinate. As a 1.5 T hospital scanner has an effective 1H polarization level of just 0.0005% this strategy should result in compressed detection times for chemically discerning measurements that probe disease. To demonstrate this techniques generality, we exemplify further studies on a range of pyridazine, pyrimidine, pyrazine and isonicotinamide analogues that feature as building blocks in biochemistry and many disease treating drugs

    Quantification of MDMA in seized tablets using benchtop 1H NMR spectroscopy in the absence of internal standards

    Get PDF
    Recreational MDMA use is a worldwide problem. Tablet dosage varies, thus entailing a requirement for quantitative analysis. The quantification of MDMA in tablets using benchtop 1H NMR spectroscopy via either linear regression (‘manual’ method) or partial least square regression (‘automated’ method) approaches are reported, without the need for an internal standard, and compared against contemporaneously obtained GC–MS data. Twenty samples were evaluated of which 15 were proven to contain MDMA, via qualitative NMR (hit score ≄ 0.97) and GC–MS (Rt = 5.6 min) analysis. Quantitative NMR analysis showed that the mean value of MDMA content was 42.6% w/w by the manual method and 45.9% w/w by the automated method. The mean value obtained from GC analysis was 44.0% w/w. A substantial proportion (n = 9) of the tablets tested possessed > 190 mg of MDMA (range 133–223 mg, average of all techniques’ calculations for each tablet). This value is higher than the reported average MDMA content of tablets by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), which was ca. 125 mg of MDMA per tablet in 2016

    Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by 1H NMR spectroscopy

    Get PDF
    Hyperpolarization enhances the intensity of the NMR signals of a molecule, whose in vivo metabolic fate can be monitored by MRI with higher sensitivity. SABRE is a hyperpolarization technique that could potentially be used to image nitric oxide (NO) production in vivo. This would be very important, because NO dysregulation is involved in several pathologies, including cardiovascular ones. The nitric oxide synthase (NOS) pathway leads to NO production via conversion of l-arginine into l-citrulline. NO is a free radical gas with a short half-life in vivo (≈5s), therefore direct NO quantification is challenging. An indirect method - based on quantifying conversion of an l-Arg- to l-Cit-derivative by 1H NMR spectroscopy - is herein proposed. A small library of pyridyl containing l-Arg derivatives was designed and synthesised. In vitro tests showed that compounds 4a-j and 11a-c were better or equivalent substrates for the eNOS enzyme (NO2 - production=19-46ÎŒM) than native l-Arg (NO2 - production=25ÎŒM). Enzymatic conversion of l-Arg to l-Cit derivatives could be monitored by 1H NMR. The maximum hyperpolarization achieved by SABRE reached 870-fold NMR signal enhancement, which opens up exciting future perspectives of using these molecules as hyperpolarized MRI tracers in vivo

    CXCR4 chemokine receptor antagonists: nickel(II) complexes of configurationally restricted macrocycles

    Get PDF
    Tetraazamacrocyclic complexes of transition metals provide useful units for incorporating multiple coordination interactions into a single protein binding molecule. They can be designed with available sites for protein interactions via donor atom-containing amino acid side chains or labile ligands, such as H 2 O, allowing facile exchange. Three configurationally restricted nickel(ii) cyclam complexes with either one or two macrocyclic rings were synthesised and their ability to abrogate the CXCR4 chemokine receptor signalling process was assessed (IC 50 = 8320, 194 and 14 nM). Analogues were characterised crystallographically to determine the geometric parameters of the acetate binding as a model for aspartate. The most active nickel(ii) compound was tested in several anti-HIV assays against representative viral strains showing highly potent EC 50 values down to 13 nM against CXCR4 using viruses, with no observed cytotoxicity (CC 50 > 125 ΌM). © 2013 The Royal Society of Chemistry

    Quick Test for Determination of N-Bombs (Phenethylamine Derivatives, NBOMe) Using High-Performance Liquid Chromatography: A Comparison between Photodiode Array and Amperometric Detection

    Get PDF
    ABSTRACT: The emergence of a new class of novel psychoactive substances, N-benzyl-substituted phenethylamine derivatives so-called “NBOMes” or “Smiles”, in the recreational drug market has forced the development of new sensitive analytical methodologies for their detection and quantitation. NBOMes’ hallucinogenic effects mimic those of the illegal psychedelic drug lysergic acid diethylamide (LSD) and are typically sold as LSD on blotter papers, resulting in a remarkable number of fatalities worldwide. In this article, four halide derivatives of NBOMe, namely, 2-(4-fluoro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2- methoxybenzyl)ethan-1-amine, and 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, were detected and quantified simultaneously using a high-performance liquid chromatographic method, and two detection systems were compared: photodiode array detection (detection system I) and amperometric detection via a commercially available impinging jet flow-cell system incorporating embedded graphite screen-printed macroelectrodes (detection system II). Under optimized experimental conditions, linear calibration plots were obtained in the concentration range of 10−300 and 20−300 ÎŒg mL−1 , for detection systems I and II, respectively. Detection limit (limit of detection) values were between 4.6−6.7 and 9.7−18 ÎŒg mL−1, for detection systems I and II, respectively. Both detectors were employed for the analysis of the four NBOMe derivatives in the bulk form, in the presence of LSD and adulterants commonly found in street samples (e.g. paracetamol, caffeine, and benzocaine). Furthermore, the method was applied for the analysis of simulated blotter papers, and the obtained percentage recoveries were satisfactory, emphasizing its advantageous applicability for the routine analysis of NBOMes in forensic laboratories

    Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water

    Get PDF
    In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B, 2014, 118, 13882-13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The 1H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10-4) or an enhancement of 104. The polarization persisted, although reduced, if cell culture medium (DPBS with Ca2+ and Mg2+) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast 1H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field

    Synthesis, characterisation and quantification of the new psychoactive substance 1-(1,3-benzodioxol-5-yl)-2-(propylamino)butan-1-one (bk-PBDB, putylone)

    Get PDF
    Synthetic cathinones are a continually evolving family of illicit drugs, with novel analogues frequently being detected. This paper reports the detection of 1-(1,3-benzodioxol-5-yl)-2-(propylamino)butan-1-one, bk-PBDB (putylone), within solid dosage forms (tablets) seized by law enforcement for the first time in the United Kingdom. The identity of the compound was confirmed via the synthesis of a pure bk-PBDB reference standard and direct spectral comparison by 1H NMR and GC-EI-MS analysis. A full analytical profiling of bk-PBDB by nuclear magnetic resonance (NMR), attenuated total reflection Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-electron ionisation-mass spectrometry (GC-EI-MS) is reported and shows good concordance between the seized sample and the reference standard. A validated GC-EI-MS method for the routine quantification of the cathinone in bulk forensic samples (LOD: 0.09â€ŻÎŒg/mL, LOQ: 0.26â€ŻÎŒg/mL) was also developed and using this method, the seized tablets were determined to contain a mixture of bk-PBDB (130.6–135.5 mg/tablet) and caffeine (40.2–43.4 mg/tablet) respectively
    • 

    corecore