22 research outputs found

    Effect of different seawater Mg2Â + concentrations on calcification in two benthic foraminifers

    Get PDF
    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater Mg2 + on calcification in two benthic foraminiferal species precipitating contrasting Mg/{CaCC}: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry ({LA}-{ICP}-{MS}). Results show that at present-day seawater Mg/{CaSW} of {\textasciitilde} 5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/{CaSW}. The relationship between Mg/{CaSW} and Mg/{CaCC} shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition ({DMg}) changes non-linearly with increasing Mg/{CaSW}, hence suggesting that the {DMg} is best described by an exponential function approaching an asymptote

    Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa

    Get PDF
    In order to fully constrain paleo-carbonate systems, proxies for two out of seven parameters, plus temperature and salinity, are required. The boron isotopic composition (δ11B) of planktonic foraminifera shells is a powerful tool for reconstructing changes in past surface ocean pH. As B(OH)4− is substituted into the biogenic calcite lattice in place of CO32−, and both borate and carbonate ions are more abundant at higher pH, it was suggested early on that B ∕ Ca ratios in biogenic calcite may serve as a proxy for [CO32−]. Although several recent studies have shown that a direct connection of B ∕ Ca to carbonate system parameters may be masked by other environmental factors in the field, there is ample evidence for a mechanistic relationship between B ∕ Ca and carbonate system parameters. Here, we focus on investigating the primary relationship to develop a mechanistic understanding of boron uptake. Differentiating between the effects of pH and [CO32−] is problematic, as they co-vary closely in natural systems, so the major control on boron incorporation remains unclear. To deconvolve the effects of pH and [CO32−] and to investigate their impact on the B ∕ Ca ratio and δ11B, we conducted culture experiments with the planktonic foraminifer Orbulina universa in manipulated culture media: constant pH (8.05), but changing [CO32−] (238, 286 and 534 µmol kg−1 CO32−) and at constant [CO32−] (276 ± 19.5 µmol kg−1) and varying pH (7.7, 7.9 and 8.05). Measurements of the isotopic composition of boron and the B ∕ Ca ratio were performed simultaneously using a femtosecond laser ablation system coupled to a MC-ICP-MS (multiple-collector inductively coupled plasma mass spectrometer). Our results show that, as expected, δ11B is controlled by pH but it is also modulated by [CO32−]. On the other hand, the B ∕ Ca ratio is driven by [HCO3−], independently of pH. This suggests that B ∕ Ca ratios in foraminiferal calcite can possibly be used as a second, independent, proxy for complete paleo-carbonate system reconstructions. This is discussed in light of recent literature demonstrating that the primary relationship between B ∕ Ca and [HCO3−] can be obscured by other environmental parameters

    Tessi & Tipo - Die Entdeckung der Ozeanversauerung

    No full text

    Effect of different seawater Mg2 + concentrations on calcification in two benthic foraminifers

    Get PDF
    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater [Mg2 +] on calcification in two benthic foraminiferal species precipitating contrasting Mg/CaCC: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results show that at present-day seawater Mg/CaSW of ~ 5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/CaSW. The relationship between Mg/CaSW and Mg/CaCC shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition (DMg) changes non-linearly with increasing Mg/CaSW, hence suggesting that the DMg is best described by an exponential function approaching an asymptote

    Effect of different seawater Mg2+ concentrations on calcification in two benthic foraminifers

    Get PDF
    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater [Mg2+] on calcification in two benthic foraminiferal species precipitating contrasting Mg/CaCC: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results show that at present-day seawater Mg/CaSW of ~5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/CaSW. The relationship between Mg/CaSW and Mg/CaCC shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition (DMg) changes non-linearly with increasing Mg/CaSW, hence suggesting that the DMg is best described by an exponential function approaching an asymptote

    Ba incorporation in benthic foraminifera

    Get PDF
    Barium (Ba) incorporated in the calcite of many foraminiferal species is proportional to the concentration of Ba in seawater. Since the open ocean concentration of Ba closely follows seawater alkalinity, foraminiferal Ba Ca can be used to reconstruct the latter. Alternatively, Ba Ca from foraminiferal shells can also be used to reconstruct salinity in coastal settings in which seawater Ba concentration corresponds to salinity as rivers contain much more Ba than seawater. Incorporation of a number of minor and trace elements is known to vary (greatly) between foraminiferal species, and application of element Ca ratios thus requires the use of species-specific calibrations. Here we show that calcite Ba Ca correlates positively and linearly with seawater Ba Ca in cultured specimens of two species of benthic foraminifera: Heterostegina depressa and Amphistegina lessonii. The slopes of the regression, however, vary two- to threefold between these two species (0.33 and 0.78, respectively). This difference in Ba partitioning resembles the difference in partitioning of other elements (Mg, Sr, B, Li and Na) in these foraminiferal taxa. A general trend across element partitioning for different species is described, which may help develop new applications of trace elements in foraminiferal calcite in reconstructing past seawater chemistry

    Impact of seawater [Ca2+] on the calcification and calcite Mg / Ca of Amphistegina lessonii

    Get PDF
    Mg / Ca ratios in foraminiferal tests are routinely used as paleotemperature proxies, but on long timescales, they also hold the potential to reconstruct past seawater Mg / Ca. The impact of both temperature and seawater Mg / Ca on Mg incorporation in Foraminifera has been quantified by a number of studies. The underlying mechanism responsible for Mg incorporation in foraminiferal calcite and its sensitivity to environmental conditions, however, has not been fully identified. A recently published biomineralization model (Nehrke et al., 2013) proposes a combination of transmembrane transport and seawater leakage or vacuolization to link calcite Mg / Ca to seawater Mg / Ca and explains inter-species variability in Mg / Ca ratios. To test the assumptions of this model, we conducted a culture study in which seawater Mg / Ca was manipulated by varying [Ca2+] and keeping [Mg2+] constant. Foraminiferal growth rates, test thickness and calcite Mg / Ca of newly formed chambers were analyzed. Results showed optimum growth rates and test thickness at Mg / Ca closest to that of ambient seawater. Calcite Mg / Ca is positively correlated to seawater Mg / Ca, indicating that it is not absolute seawater [Ca2+] and [Mg2+] but their ratio that controls Mg / Ca in tests. These results demonstrate that the calcification process cannot be based only on seawater vacuolization, supporting the mixing model proposed by Nehrke et al. (2013). Here, however, we suggest transmembrane transport fractionation that is not as strong as suggested by Nehrke et al. (2013)
    corecore