85 research outputs found
Eco Global Evaluation: Cross Benefits of Economic and Ecological Evaluation
This paper highlights the complementarities of cost and environmental evaluation in a sustainable approach. Starting with the needs and limits for whole product lifecycle evaluation, this paper begins with the modeling, data capture and performance indicator aspects. In a second step, the information issue, regarding the whole lifecycle of the product is addressed. In order to go further than the economical evaluations/assessment, the value concept (for a product or a service) is discussed. Value could combine functional requirements, cost objectives and environmental impact. Finally, knowledge issues which address the complexity of integrating multi-disciplinary expertise to the whole lifecycle of a product are discussing.EcoSD NetworkEcoSD networ
Shallow carrier traps in hydrothermal ZnO crystals
Native and hydrogen-plasma induced shallow traps in hydrothermally grown ZnO crystals have been investigated by charge-based deep level transient spectroscopy, photoluminescence and cathodoluminescence microanalysis. The as-grown ZnO exhibits a trap state at 23 meV, while H-doped ZnO produced by plasma doping shows two levels at 22 meV and 11 meV below the conduction band. As-grown ZnO displays the expected thermal decay of bound excitons with increasing temperature from 7 K, while we observed an anomalous behaviour of the excitonic emission in H-doped ZnO, in which its intensity increases with increasing temperature in the range 140-300 K. Based on a multitude of optical results, a qualitative model is developed which explains the Y line structural defects, which act as an electron trap with an activation energy of 11 meV, being responsible for the anomalous temperature-dependent cathodoluminescence of H-doped ZnO. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
Spectroscopic Evidence of Carbon Nanotubesâ Metallic Character Loss Induced by Covalent Functionalization via Nitric Acid Purification
A detailed characterization of covalently functionalized HiPco single-walled carbon nanotubes (SWNTs) has been carried out using several physicochemical methods (thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman scattering). The chemical process, finally leading to SWNT?ester derivatives, starts from nitric acid purification of pristine SWNTs. Besides the efficiency of the functionalization, we show that a loss of metallic character of the carbon nanotubes is initiated by the nitric acid treatment of pristine SWNTs and is maintained in the final SWNT ester derivatives. A higher reactivity of the metallic tubes is also demonstrated
Tuning the Raman Resonance Behavior of Single-Walled Carbon Nanotubes via Covalent Functionalization
We present a systematic Raman study over a range of excitation energies of arc discharge single-walled carbon nanotubes (SWCNTs) covalently functionalized according to two processes, esterification and reductive alkylation. The SWCNTs are characterized by resonance Raman spectroscopy at each step of the functionalization process, showing changes in radial breathing mode frequencies and transition energies for both semiconducting and metallic tubes. Particular attention is given to a family of tubes clearly identified in the Kataura plot for which we continuously tune the excitation energy from 704 to 752 nm. This allows us to quantify the energy shift occurring in the spacing of the van Hove singularities. We demonstrate that, independently of the functionalization technique, the type of chain covalently bound to the tubes plays an important role, notably when oxygen atoms lie close to the tubes, inducing a larger shift in transition energy as compared to that of other carbonaceous chains. The study shows the complexity of interpreting Raman data and suggests many interpretations in the literature may need to be revisited
Opportunities for polymer-based nanowires in optoelectronics and nanophotonics
International audienceSee document joine
Opportunities for polymer-based nanowires in optoelectronics and nanophotonics
International audienceSee document joine
Synthesis and characterization of polymers for nonlinear optical applications
International audienceA difunctional NLO Azo-Dye chromophore has been synthesized and polymerization has been performed with a comonomer bearing a side-chain epoxy group. Deposition of the polymer on glass substrates was performed by spin-coating, resulting in uniform films up to 2 ”m thickness. The orientation of the chromophore was performed under a " pin-to-plane " positive corona discharge followed by a heat-treatment in order to obtain reticulation of the films. Molecular orientation has been investigated using UV-Vis. and Raman spectroscopy. Poling of the films results in a decay of absorbency as well as in a blue shift of the spectrum. At the same time, the 1600 cm-1 band disappears from the Raman spectra, indicating orientation of the chromophores. Cross-linking has been studied by FTIR and all-optical poling and showed an improved stability of the electro-optic thin films
Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling
This paper presents an effective Tip-Enhanced Raman Spectrometer (TERS) in backscattering reflection configuration. It combines a tip-probe nanopositioning system with Raman spectroscope. Specific tips were processed by anchoring gold nanoparticles on the apex of tapered optical fibers, prepared by an improved chemical etching method. Hence, it is possible to expose a very small area of the sample (~20ânm2) to the very strong local electromagnetic field generated by the lightning rod effect. This experimental configuration was modelled and optimised using the finite element method, which takes into account electromagnetic effects as well as the plasmon resonance. Finally, TERS measurements on single-wall carbon nanotubes were successfully performed. These results confirm the high Raman scattering enhancement predicted by the modelling, induced by our new nano-Raman device
Non-linear and resonance effects in carbon nanotube structures
International audienceIn this paper, we report on Raman scattering and Surface Enhanced Raman Scattering (SERS) studies of single walled carbon nanotubes (SWNTs) and carbon nanotube/conjugated polymers composites. We demonstrate that under SERS conditions we induce an abnormal anti-Stokes Raman emission, that can be interpreted as being due to a "single-beam pumped" Coherent Anti-Stokes Raman Scattering (CARS) effect. We also investigate in detail the anti-Stokes/Stokes (aS/S) intensity ratios of the radial breathing modes (RBMs) of SWNTs as a function of several parameters. From calculations, we show that resonance phenomena mostly explain the aS/S intensity ratio anomalies, but only at low frequencies. In addition, we describe results obtained with polymers like poly(bithiophene) (PBTh) polymerized on carbon nanotube thin films which exhibit also an amplification of its high frequency Raman modes in the anti-Stokes branch, generated by the plasmon excitation of metallic tubes. This phenomenon occurs in several other materials such as composites based on SWNTs and conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) and polyparaphenylene-vinylene (PPV) for modes located around 1500 cmâ1
- âŠ