176 research outputs found

    Curvature, hybridization, and STM images of carbon nanotubes

    Full text link
    The curvature effects in carbon nanotubes are studied analytically as a function of chirality. The pi-orbitals are found to be significantly rehybridized in all tubes, so that they are never normal to the tubes' surface. This results in a curvature induced gap in the electronic band-structure, which turns out to be larger than previous estimates. The tilting of the pi-orbitals should be observable by atomic resolution scanning tunneling microscopy measurements.Comment: Four pages in revtex format including four epsfig-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/hybrid.pd

    Crystal Structures and Electronic Properties of Haloform-Intercalated C60

    Full text link
    Using density functional methods we calculated structural and electronic properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3 (X=Cl,Br). Both compounds are narrow band insulator materials with a gap between valence and conduction bands larger than 1 eV. The calculated widths of the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively. The orbitals of the haloform molecules overlap with the π\pi orbitals of the fullerene molecules and the p-type orbitals of halogen atoms significantly contribute to the valence and conduction bands of C60 2CHX3. Charging with electrons and holes turns the systems to metals. Contrary to expectation, 10 to 20 % of the charge is on the haloform molecules and is thus not completely localized on the fullerene molecules. Calculations on different crystal structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at the Fermi energy are sensitive to the orientation of the haloform and C60 molecules. At a charging of three holes, which corresponds to the superconducting phase of pure C60 and C60 2CHX3, the calculated density of states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60 2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table

    Backward diode composed of a metallic and semiconducting nanotube

    Full text link
    The conditions necessary for a nanotube junction connecting a metallic and semiconducting nanotube to rectify the current are theoretically investigated. A tight binding model is used for the analysis, which includes the Hartree-Fock approximation and the Green's function method. It is found that the junction has a behavior similar to the backward diode if the gate electrode is located nearby and the Fermi level of the semiconducting tube is near the gap. Such a junction would be advantageous since the required length for the rectification could be reduced.Comment: 4 pages, RevTeX, uses epsf.st

    Interaction of vortices in viscous planar flows

    Full text link
    We consider the inviscid limit for the two-dimensional incompressible Navier-Stokes equation in the particular case where the initial flow is a finite collection of point vortices. We suppose that the initial positions and the circulations of the vortices do not depend on the viscosity parameter \nu, and we choose a time T > 0 such that the Helmholtz-Kirchhoff point vortex system is well-posed on the interval [0,T]. Under these assumptions, we prove that the solution of the Navier-Stokes equation converges, as \nu -> 0, to a superposition of Lamb-Oseen vortices whose centers evolve according to a viscous regularization of the point vortex system. Convergence holds uniformly in time, in a strong topology which allows to give an accurate description of the asymptotic profile of each individual vortex. In particular, we compute to leading order the deformations of the vortices due to mutual interactions. This allows to estimate the self-interactions, which play an important role in the convergence proof.Comment: 39 pages, 1 figur

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    Lifetimes of High-Degree p Modes in the Quiet and Active Sun

    Full text link
    We study variations of the lifetimes of high-degree solar p-modes in the quiet and active Sun with the solar activity cycle. The lifetimes in the degree range 300 - 600 and frequency 2.5 - 4.5 mHz were computed from SOHO/MDI data in an area including active regions and quiet Sun using the time-distance technique. We applied our analysis to the data in four different phases of solar activity: in 1996 (at minimum), 1998 (rising phase), 2000 (at maximum) and 2003 (declining phase). The results from the area with active regions show that the lifetime decreases as activity increases. The maximal lifetime variations are between solar minimum in 1996 and maximum in 2000; the relative variation averaged over all mode degree values and frequencies is a decrease of about 13%. The lifetime reductions relative to 1996 are about 7% in 1998 and about 10% in 2003. The lifetime computed in the quiet region still decreases with solar activity although the decrease is smaller. On average, relative to 1996, the lifetime decrease is about 4% in 1998, 10% in 2000 and 8% in 2003. Thus, measured lifetime increases when regions of high magnetic activity are avoided. Moreover, the lifetime computed in quiet regions also shows variations with activity cycle.Comment: 13 pages, 5 figures; Accepted for publication in Solar Physic

    Vortex merger near a topographic slope in a homogeneous rotating fluid

    Get PDF
    This work is a contribution to the PHYSINDIEN research program. It was supported by CNRS-RFBR contract PRC 1069/16-55-150001.The effect of a bottom slope on the merger of two identical Rankine vortices is investigated in a two dimensional, quasi-geostrophic, incompressible fluid. When two cyclones initially lie parallel to the slope, and more than two vortex diameters away from the slope, the critical merger distance is unchanged. When the cyclones are closer to the slope, they can merge at larger distances, but they lose more mass into filaments, thus weakening the efficiency of merger. Several effects account for this: the topographic Rossby wave advects the cyclones, reduces their mutual distance and deforms them. This along shelf wave breaks into filaments and into secondary vortices which shear out the initial cyclones. The global motion of fluid towards the shallow domain and the erosion of the two cyclones are confirmed by the evolution of particles seeded both in the cyclone sand near the topographic slope. The addition of tracer to the flow indicates that diffusion is ballistic at early times. For two anticyclones, merger is also facilitated because one vortex is ejected offshore towards the other, via coupling with a topographic cyclone. Again two anticyclones can merge at large distance but they are eroded in the process. Finally, for taller topographies, the critical merger distance is again increased and the topographic influence can scatter or completely erode one of the two initial cyclones. Conclusions are drawn on possible improvements of the model configuration for an application to the ocean.PostprintPeer reviewe
    • …
    corecore