517 research outputs found

    Gaze Behavior, Believability, Likability and the iCat

    Get PDF
    The iCat is a user-interface robot with the ability to express a range of emotions through its facial features. This paper summarizes our research whether we can increase the believability and likability of the iCat for its human partners through the application of gaze behaviour. Gaze behaviour serves several functions during social interaction such as mediating conversation flow, communicating emotional information and avoiding distraction by restricting visual input. There are several types of eye and head movements that are necessary for realizing these functions. We designed and evaluated a gaze behaviour system for the iCat robot that implements realistic models of the major types of eye and head movements found in living beings: vergence, vestibulo ocular reflexive, smooth pursuit movements and gaze shifts. We discuss how these models are integrated into the software environment of the iCat and can be used to create complex interaction scenarios. We report about some user tests and draw conclusions for future evaluation scenarios

    Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation

    Get PDF
    We have examined the ability of normal and heterotopically transplanted neural crest cells to migrate along cranial neural crest pathways in the axolotl using focal DiI injections and in situ hybridization with the neural crest marker, AP-2. DiI labeling demonstrates that cranial neural crest cells migrate as distinct streams along prescribed pathways to populate the maxillary and mandibular processes of the first branchial arch, the hyoid arch and gill arches 1-4, following migratory pathways similar to those observed in other vertebrates. Another neural crest marker, the transcription factor AP-2, is expressed by premigratory neural crest cells within the neural folds and migrating neural crest cells en route to and within the branchial arches. Rotations of the cranial neural folds suggest that premigratory neural crest cells are not committed to a specific branchial arch fate, but can compensate when displaced short distances from their targets by migrating to a new target arch. In contrast, when cells are displaced far from their original location, they appear unable to respond appropriately to their new milieu such that they fail to migrate or appear to migrate randomly. When trunk neural folds are grafted heterotopically into the head, trunk neural crest cells migrate in a highly disorganized fashion and fail to follow normal cranial neural crest pathways. Importantly, we find incorporation of some trunk cells into branchial arch cartilage despite the random nature of their migration. This is the first demonstration that trunk neural crest cells can form cartilage when transplanted to the head. Our results indicate that, although cranial and trunk neural crest cells have inherent differences in ability to recognize migratory pathways, trunk neural crest can differentiate into cranial cartilage when given proper instructive cues

    (4aS,5R,7R,8S,8aR)-8-(1,3-Dioxolan-2-yl)-7,8-dimethyl-5-(1-methyl­ethen­yl)perhydro­naphthalen-2-one

    Get PDF
    In the chiral title compound, C18H28O3, the two six-membered rings of the perhydronaphthalenone adopt a rigid chair–chair conformation and the five-membered dioxolanyl ring adopts an envelope conformation. The crystal structure is stabilized only by weak inter­actions

    Topologically safe curved schematization

    Get PDF
    Traditionally schematized maps make extensive use of curves. However, automated methods for schematization are mostly restricted to straight lines. We present a generic framework for topology-preserving curved schematization that allows a choice of quality measures and curve types. Our fully-automated approach does not need critical points or salient features. We illustrate our framework with Bézier curves and circular arcs
    corecore