54 research outputs found

    Building consensus in neuromesodermal research:Current advances and future biomedical perspectives

    Get PDF
    International audienceThe development of the vertebrate body axis relies on the activity of different populations of axial progenitors, including neuromesodermal progenitors. Currently, the term "Neuromesodermal progenitors'' is associated with various definitions. Here, we use distinct terminologies to highlight advances in our understanding of this cell type at both the single cell and population levels. We discuss how these recent insights prompt new opportunities to address a range of biomedical questions spanning cancer metastasis, congenital disorders, cellular metabolism, regenerative medicine, and evolution. Finally, we outline some of the major unanswered questions and propose future directions at the forefront of neuromesodermal research

    Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation

    Get PDF
    WNT signalling has multiple roles. It maintains pluripotency of embryonic stem cells, assigns posterior identity in the epiblast and induces mesodermal tissue. Here we provide evidence that these distinct functions are conducted by the transcription factor SOX2, which adopts different modes of chromatin interaction and regulatory element selection depending on its level of expression. At high levels, SOX2 displaces nucleosomes from regulatory elements with high-affinity SOX2 binding sites, recruiting the WNT effector TCF/β-catenin and maintaining pluripotent gene expression. Reducing SOX2 levels destabilizes pluripotency and reconfigures SOX2/TCF/β-catenin occupancy to caudal epiblast expressed genes. These contain low-affinity SOX2 sites and are co-occupied by T/Bra and CDX. The loss of SOX2 allows WNT-induced mesodermal differentiation. These findings define a role for Sox2 levels in dictating the chromatin occupancy of TCF/β-catenin and reveal how context-specific responses to a signal are configured by the level of a transcription factor

    Nervous System Regionalization Entails Axial Allocation before Neural Differentiation

    Get PDF
    Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS

    c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells

    Get PDF
    The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4+ T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4+ T cells in disease models involving the TH1 subset of helper T cells (malaria), TH2 cells (allergy) and TH17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in TH1 and TH2 responses, TH17 cell–mediated pathology was reduced in this context, with an accompanying decrease in TH17 cells and increase in Foxp3+ regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner

    The role of patched1 in mammalian facial dysmorphology

    No full text

    Unmasking the ciliopathies: Craniofacial defects and the primary cilium

    No full text
    Over the past decade, the primary cilium has emerged as a pivotal sensory organelle that acts as a major signaling hub for a number of developmental signaling pathways. In that time, a vast number of proteins involved in trafficking and signaling have been linked to ciliary assembly and/or function, demonstrating the importance of this organelle during embryonic development. Given the central role of the primary cilium in regulating developmental signaling, it is not surprising that its dysfunction results in widespread defects in the embryo, leading to an expanding class of human congenital disorders known as ciliopathies. These disorders are individually rare and phenotypically variable, but together they affect virtually every vertebrate organ system. Features of ciliopathies that are often overlooked, but which are being reported with increasing frequency, are craniofacial abnormalities, ranging from subtle midline defects to full-blown orofacial clefting. The challenge moving forward is to understand the primary mechanism of disease given the link between the primary cilium and a number of developmental signaling pathways (such as hedgehog, platelet-derived growth factor, and WNT signaling) that are essential for craniofacial development. Here, we provide an overview of the diversity of craniofacial abnormalities present in the ciliopathy spectrum, and reveal those defects in common across multiple disorders. Further, we discuss the molecular defects and potential signaling perturbations underlying these anomalies. This provides insight into the mechanisms leading to ciliopathy phenotypes more generally and highlights the prevalence of widespread dysmorphologies resulting from cilia dysfunction

    The route to spinal cord cell types: a tale of signals and switches

    No full text
    Understanding the mechanisms that control induction and elaboration of the vertebrate central nervous system (CNS) requires an analysis of the extrinsic signals and downstream transcriptional networks that assign cell fates in the correct space and time. We focus on the generation and patterning of the spinal cord. We summarize evidence that the origin of the spinal cord is distinct from the anterior regions of the CNS. We discuss how this affects the gene regulatory networks and cell state transitions that specify spinal cord cell subtypes, and we highlight how the timing of extracellular signals and dynamic control of transcriptional networks contribute to the correct spatiotemporal generation of different neural cell types
    • …
    corecore