912 research outputs found
Populations of doubled haploids for genetic mapping in hexaploid winter triticale.
To create a framework for genetic dissection of hexaploid triticale, six populations of doubled haploid (DH) lines were developed from pairwise hybrids of high-yielding winter triticale cultivars. The six populations comprise between 97 and 231 genotyped DH lines each, totaling 957 DH lines. A consensus genetic map spans 4593.9 cM is composed of 1576 unique DArT markers. The maps reveal several structural rearrangements in triticale genomes. In preliminary tests of the populations and maps, markers specific to wheat segments of the engineered rye chromosome 1R (RM1B) were identified. Example QTL mapping of days to heading in cv. Krakowiak revealed loci on chromosomes 2BL and 2R responsible for extended vernalization requirement, and candidate genes were identified. The material is available to all parties interested in triticale genetics
cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner
cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior
Gamma-Ray Bursts in the Swift Era
With its rapid-response capability and multiwavelength complement of
instruments, the Swift satellite has transformed our physical understanding of
gamma-ray bursts (GRBs). Providing high-quality observations of hundreds of
bursts, and facilitating a wide range of follow-up observations within seconds
of each event, Swift has revealed an unforeseen richness in observed burst
properties, shed light on the nature of short-duration bursts, and helped
realize the promise of GRBs as probes of the processes and environments of star
formation out to the earliest cosmic epochs. These advances have opened new
perspectives on the nature and properties of burst central engines,
interactions with the burst environment from microparsec to gigaparsec scales,
and the possibilities for non-photonic signatures. Our understanding of these
extreme cosmic sources has thus advanced substantially; yet more than 40 years
after their discovery, GRBs continue to present major challenges on both
observational and theoretical fronts.Comment: 67 pages, 16 figures; ARAA, 2009;
http://arjournals.annualreviews.org/toc/astro/47/
Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1
In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1¿ strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression
Branch Mode Selection during Early Lung Development
Many organs of higher organisms, such as the vascular system, lung, kidney,
pancreas, liver and glands, are heavily branched structures. The branching
process during lung development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by the sequential,
non-random use of three geometrically simple modes of branching (domain
branching, planar and orthogonal bifurcation). While many regulatory components
and local interactions have been defined an integrated understanding of the
regulatory network that controls the branching process is lacking. We have
developed a deterministic, spatio-temporal differential-equation based model of
the core signaling network that governs lung branching morphogenesis. The model
focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well
as the SHH receptor patched (Ptc). We show that the reported biochemical
interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice.
The kinetic parameters as well as the domain shape are based on experimental
data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong
regulatory potential in that the switching between branching modes can be
achieved by targeted changes in the parameter values. We note that the sequence
of different branching events may also be the result of different growth
speeds: fast growth triggers lateral branching while slow growth favours
bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is
sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
Shape Self-Regulation in Early Lung Morphogenesis
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung’s striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree’s fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung’s complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways
Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo
The recent confirmation that at least some gamma-ray bursters (GRBs) are
indeed at cosmological distances raises the possibility that observations of
these could provide interesting constraints on the fundamental laws of physics.
Here we demonstrate that the fine-scale time structure and hard spectra of GRB
emissions are very sensitive to the possible dispersion of electromagnetic
waves in vacuo with velocity differences \delta v \sim E/E_{\QG}, as
suggested in some approaches to quantum gravity. A simple estimate shows that
GRB measurements might be sensitive to a dispersion scale comparable
to the Planck energy scale GeV, sufficient to test some of
these theories, and we outline aspects of an observational programme that could
address this goal.Comment: LaTex. 9 pages. Version accepted for publication in Nature. (A few
changes to the reference list. Additional comments on the analyticity
properties of the dispersion law.
Spontaneous mechanical oscillation of a DC driven single crystal
There is a large interest to decrease the size of mechanical oscillators
since this can lead to miniaturization of timing and frequency referencing
devices, but also because of the potential of small mechanical oscillators as
extremely sensitive sensors. Here we show that a single crystal silicon
resonator structure spontaneously starts to oscillate when driven by a constant
direct current (DC). The mechanical oscillation is sustained by an
electrothermomechanical feedback effect in a nanobeam, which operates as a
mechanical displacement amplifier. The displacement of the resonator mass is
amplified, because it modulates the resistive heating power in the nanobeam via
the piezoresistive effect, which results in a temperature variation that causes
a thermal expansion feedback-force from the nanobeam on the resonator mass.
This self-amplification effect can occur in almost any conducting material, but
is particularly effective when the current density and mechanical stress are
concentrated in beams of nano-scale dimensions
The World Trade Center Disaster and the Health of Workers: Five-Year Assessment of a Unique Medical Screening Program
BACKGROUND: Approximately 40,000 rescue and recovery workers were exposed to caustic dust and toxic pollutants following the 11 September 2001 attacks on the World Trade Center (WTC). These workers included traditional first responders, such as firefighters and police, and a diverse population of construction, utility, and public sector workers. METHODS: To characterize WTC-related health effects, the WTC Worker and Volunteer Medical Screening Program was established. This multicenter clinical program provides free standardized examinations to responders. Examinations include medical, mental health, and exposure assessment questionnaires; physical examinations; spirometry; and chest X rays. RESULTS: Of 9,442 responders examined between July 2002 and April 2004, 69% reported new or worsened respiratory symptoms while performing WTC work. Symptoms persisted to the time of examination in 59% of these workers. Among those who had been asymptomatic before September 11, 61% developed respiratory symptoms while performing WTC work. Twenty-eight percent had abnormal spirometry; forced vital capacity (FVC) was low in 21%; and obstruction was present in 5%. Among nonsmokers, 27% had abnormal spirometry compared with 13% in the general U.S. population. Prevalence of low FVC among nonsmokers was 5-fold greater than in the U.S. population (20% vs. 4%). Respiratory symptoms and spirometry abnormalities were significantly associated with early arrival at the site. CONCLUSION: WTC responders had exposure-related increases in respiratory symptoms and pulmonary function test abnormalities that persisted up to 2.5 years after the attacks. Long-term medical monitoring is required to track persistence of these abnormalities and identify late effects, including possible malignancies. Lessons learned should guide future responses to civil disasters
- …