547 research outputs found

    A Microfluidic Platform for Precision Small-volume Sample Processing and Its Use to Size Separate Biological Particles with an Acoustic Microdevice.

    Get PDF
    A major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15-1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection, system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing

    Pyridoxamine Traps Intermediates in Lipid Peroxidation Reactions in Vivo: Evidence on the Role of Lipids in Chemical Modification of Protein and Development of Diabetic Complications

    Get PDF
    Maillard or browning reactions between reducing sugars and protein lead to formation of advanced glycation end products (AGEs) and are thought to contribute to the pathogenesis of diabetic complications. AGE inhibitors such as aminoguanidine and pyridoxamine (PM) inhibit both the formation of AGEs and development of complications in animal models of diabetes. PM also inhibits the chemical modification of protein by advanced lipoxidation end products (ALEs) during lipid peroxidation reactions in vitro. We show here that several PM adducts, formed in incubations of PM with linoleate and arachidonate in vitro, are also excreted in the urine of PM-treated animals. The PM adducts N-nonanedioyl-PM (derived from linoleate), N-pentanedioyl-PM, N-pyrrolo-PM, and N-(2-formyl)-pyrrolo-PM (derived from arachidonate), and N-formyl-PM and N-hexanoyl-PM (derived from both fatty acids) were quantified by liquid chromatography-mass spectrometry analysis of rat urine. Levels of these adducts were increased 5-10-fold in the urine of PM-treated diabetic and hyperlipidemic rats, compared with control animals. We conclude that the PM functions, at least in part, by trapping intermediates in AGE/ALE formation and propose a mechanism for PM inhibition of AGE/ALE formation involving cleavage of alpha-dicarbonyl intermediates in glycoxidation and lipoxidation reactions. We also conclude that ALEs derived from polyunsaturated fatty acids are increased in diabetes and hyperlipidemia and may contribute to development of long term renal and vascular pathology in these diseases

    Generalized polarizabilities and the chiral structure of the nucleon

    Get PDF
    We discuss the virtual Compton scattering reaction epepγe^-p\to e^-p\gamma at low energies. We present results for the generalized polarizabilities of the nucleon obtained in heavy baryon chiral perturbation theory at O(p3)O(p^3).Comment: 5 pages, LaTex file, 1 postscript figure, uses ``espcrc1.sty'', talk given by S. Scherer at the 15th International Conference on Few Body Problems in Physics, Groningen, The Netherlands, 22-26 July 1997, to appear in the proceedings (Nucl. Phys. A

    Ariel - Volume 10 Number 3

    Get PDF
    Executive Editors Madalyn Schaefgen David Reich Business Manager David Reich News Editors Medical College Edward Zurad CAHS John Guardiani World Mark Zwanger Features Editors Meg Trexler Jim O\u27Brien Editorials Editor Jeffrey Banyas Photography and Sports Editor Stuart Singer Commons Editor Brenda Peterso

    Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella

    Get PDF
    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host

    Virtual Compton Scattering off the Nucleon in Chiral Perturbation Theory

    Get PDF
    We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg's power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.Comment: 26 pages, 2 Postscript figures, RevTex using epsfi

    Communications Biophysics

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant 2 P01 GM-14940-01)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E)National Aeronautics and Space Administration (Grant NsG-496)National Institutes of Health (Grant 2 ROl NB-05462-03

    Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies

    Get PDF
    ABSTRACT: BACKGROUND: Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. METHODS: We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the formal distinction between the net benefit for the treated and for the untreated and define the concept of the "overall net benefit". Next, we revisit the important distinction between the concept of accuracy, as typically assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of decision curve analysis to be applied in the context of case-control studies. RESULTS: We show that the overall net benefit, which combines the net benefit for the treated and the untreated, is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision curve analysis, we illustrate the important difference between the accuracy and the utility of a model, demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation procedure. CONCLUSIONS: We present several interrelated extensions to decision curve analysis that will both facilitate its interpretation and broaden its potential area of application

    Hydrogen storage systems from waste Mg alloys

    Get PDF
    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH 2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes
    corecore