49 research outputs found

    JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure

    Get PDF
    Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity. BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage. Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload. These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy

    Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies

    Get PDF
    The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O 2) or normoxia (21% O2) for 1-72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminex™ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases. © 2013 Ziraldo et al

    Immune Activation Reduces Sperm Quality in the Great Tit

    Get PDF
    Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm

    Effect of a Bacterial Lipopolysaccharide Treatment on Rabbit Testis and Ejaculated Sperm.

    No full text
    In a previous study, we reported the short- and long-term effects of bacterial lipopolysaccharide (LPS)-induced inflammation on rabbit sperm quality. This study was aimed at exploring the spermatogenesis of the rabbit model focussing on the possible damages occurring to the testis and ejaculated sperm. Twenty New Zealand White rabbit bucks were divided into two groups. One group was inoculated intra-peritoneally with LPS, the other group, considered as control, was treated under the same conditions with saline only. Semen samples were collected before LPS injection, the 7th, 14th, 21st, 30th, 45th, 60th and 90th day after LPS treatment. Semen parameters were evaluated following international guidelines. The kinetic characteristics of ejaculated sperm were analysed using a computer-assisted sperm analyzer and the ultrastructural characteristics were explored by transmission electron microscopy (TEM). On the 7th, 14th and 30th day, testis from treated rabbits and controls were obtained. Testis samples were analysed by light microscopy and TEM. The induced LPS lesions in the testis became evident the 7th day after treatment, with a decrease in germinal cells and with an increase in structurally altered Sertoli cells; normal spermatogenesis was restored on the 30th day. The testicular damages observed on day 7 were probably responsible for the reduction in sperm concentration and motility and the ultrastructural alterations that were detected in the ejaculated sperm on the 14th through the 30th days after treatment. In conclusion, rabbit buck treated with LPS could be a useful model for studying the effect of an induced systemic inflammation on spermatogenesi

    Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota

    No full text
    Intestinal epithelial homeostasis is maintained by complex interactions among epithelial cells, commensal gut microorganisms, and immune cells. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD), but the mechanisms of this process are not clear. We investigated how Sirtuin 1 (SIRT1), a conserved mammalian NAD+-dependent protein deacetylase, senses environmental stress to alter intestinal integrity. Methods We performed studies of mice with disruption of Sirt1 specifically in the intestinal epithelium (SIRT1 iKO, villin-Cre+, Sirt1flox/floxmice) and control mice (villin-Cre-, Sirt1[superscript flox/flox]) on a C57BL/6 background. Acute colitis was induced in some mice by addition of 2.5% dextran sodium sulfate to drinking water for 5–9 consecutive days. Some mice were given antibiotics via their drinking water for 4 weeks to deplete their microbiota. Some mice were fed with a cholestyramine-containing diet for 7 days to sequester their bile acids. Feces were collected and proportions of microbiota were analyzed by 16S rRNA amplicon sequencing and quantitative PCR. Intestines were collected from mice and gene expression profiles were compared by microarray and quantitative PCR analyses. We compared levels of specific mRNAs between colon tissues from age-matched patients with ulcerative colitis (n=10) vs without IBD (n=8, controls). Results Mice with intestinal deletion of SIRT1 (SIRT1 iKO) had abnormal activation of Paneth cells starting at the age of 5–8 months, with increased activation of NF-κB, stress pathways, and spontaneous inflammation at 22–24 months of age, compared with control mice. SIRT1 iKO mice also had altered fecal microbiota starting at 4–6 months of age compared with control mice, in part because of altered bile acid metabolism. Moreover, SIRT1 iKO mice with defective gut microbiota developed more severe colitis than control mice. Intestinal tissues from patients with ulcerative colitis expressed significantly lower levels of SIRT1 mRNA than controls. Intestinal tissues from SIRT1 iKO mice given antibiotics, however, did not have signs of inflammation at 22–24 months of age, and did not develop more severe colitis than control mice at 4–6 months. Conclusions In analyses of intestinal tissues, colitis induction, and gut microbiota in mice with intestinal epithelial disruption of SIRT1, we found this protein to prevent intestinal inflammation by regulating the gut microbiota. SIRT1 might therefore be an important mediator of host–microbiome interactions. Agents designed to activate SIRT1 might be developed as treatments for IBDs. Keywords: IBD; mouse model; microbiome; bacteri
    corecore