713 research outputs found

    Antenna Technology Shuttle Experiment (ATSE)

    Get PDF
    Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost

    Charges of twisted branes: the exceptional cases

    Full text link
    The charges of the twisted D-branes for the two exceptional cases (SO(8) with the triality automorphism and E_6 with charge conjugation) are determined. To this end the corresponding NIM-reps are expressed in terms of the fusion rules of the invariant subalgebras. As expected the charge groups are found to agree with those characterising the untwisted branes.Comment: 15 page

    Medical Treatment of Radiological Casualties: Current Concepts

    Get PDF
    The threat of radiologic or nuclear terrorism is increasing, yet many physicians are unfamiliar with basic treatment principles for radiologic casualties. Patients may present for care after a covert radiation exposure, requiring an elevated level of suspicion by the physician. Traditional medical and surgical triage criteria should always take precedence over radiation exposure management or decontamination. External contamination from a radioactive cloud is easily evaluated using a simple Geiger-Müller counter and decontamination accomplished by prompt removal of clothing and traditional showering. Management of surgical conditions in the presence of persistent radioactive contamination should be dealt with in a conventional manner with health physics guidance. To be most effective in the medical management of a terrorist event involving high-level radiation, physicians should understand basic manifestations of the acute radiation syndrome, the available medical countermeasures, and the psychosocial implications of radiation incidents. Health policy considerations include stockpiling strategies, effective use of risk communications, and decisionmaking for shelter-in-place versus evacuation after a radiologic incident

    Efficacy of polyethylene glycol adhesion barrier after gynecological laparoscopic surgery: Results of a randomized controlled pilot study

    Get PDF
    Postoperative adhesions are the most frequent complication of peritoneal surgery, causing small bowel obstruction, female infertility and chronic pain. This pilot study assessed the efficacy of a sprayable polyethylene glycol (PEG) barrier in the prevention of de novo adhesions. 16 patients undergoing laparoscopic gynecological surgery were randomly assigned by shuffled sealed envelopes to receive either the adhesion barrier or no adhesion prevention. Incidence and severity of adhesions were scored at eight sites in the pelvis and reassessed by second look laparoscopy. Adhesion prevention was considered successful if no de novo adhesion were found at second look laparoscopy. One patient was excluded before randomization. Nine patients were randomized to treatment and six patients to control group. De novo adhesions were found in 0/9 patients who received the PEG barrier compared to 4/6 without adhesion prevention (0% vs. 67%, P = 0.01). Reduction in adhesion score was significantly greater in patients receiving PEG barrier (−2.6 vs. −0.06, P = 0.03). Meta-analysis of three randomized trials demonstrated that PEG barrier reduces the incidence of adhesions (odds ratio [OR] = 0.27; 95% CI 0.11–0.67). From this study, PEG barrier seems effective in reducing postoperative formation of de novo adhesions

    The "Multimat" experiment at CERN HiRadMat facility: advanced testing of novel materials and instrumentation for HL-LHC collimators

    Get PDF
    The increase of the stored beam energy in future particle accelerators, such as the HL-LHC and the FCC, calls for a radical upgrade in the design, materials and instrumentation of Beam Intercepting Devices (BID), such as collimators Following successful tests in 2015 that validated new composite materials and a novel jaw design conceived for the HL-LHC collimators, a new HiRadMat experiment, named “HRMT36-MultiMat”, is scheduled for autumn 2017. Its objective is to determine the behaviour under high intensity proton beams of a broad range of materials relevant for collimators and beam intercepting devices, thin-film coatings and advanced equipment. The test bench features 16 separate target stations, each hosting various specimens, allowing the exploration of complex phenomena such as dynamic strength, internal damping, nonlinearities due to anisotropic inelasticity and inhomogeneity, effects of energy deposition and radiation on coatings. This paper details the main technical solutions and engineering calculations for the design of the test bench and of the specimens, the candidate target materials and the instrumentation system

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    corecore