47 research outputs found

    Generation of Polarization Squeezing with Periodically Poled KTP at 1064 nm

    Full text link
    We report the experimental demonstration of directly produced polarization squeezing at 1064 nm from a type I optical parametric amplifier (OPA) based on a periodically poled KTP crystal (PPKTP). The orthogonal polarization modes of the polarization squeezed state are both defined by the OPA cavity mode, and the birefringence induced by the PPKTP crystal is compensated for by a second, but inactive, PPKTP crystal. Stokes parameter squeezing of 3.6 dB and anti squeezing of 9.4 dB is observed.Comment: 4 pages, 2 figure

    Experimental Demonstration of Continuous Variable Cloning with Phase-Conjugate Inputs

    Get PDF
    We report the experimental demonstration of continuous variable cloning of phase conjugate coherent states as proposed by Cerf and Iblisdir (Phys. Rev. Lett. 87, 247903 (2001)). In contrast to the proposal of Cerf and Iblisdir, the cloning transformation is accomplished using only linear optical components, homodyne detection and feedforward. Three clones are succesfully produced with fidelities about 89%.Comment: 5 page

    Experimental demonstration of coherent state estimation with minimal disturbance

    Full text link
    We investigate the optimal tradeoff between information gained about an unknown coherent state and the state disturbance caused by the measurement process. We propose several optical schemes that can enable this task, and we implement one of them, a scheme which relies on only linear optics and homodyne detection. Experimentally we reach near optimal performance, limited only by detection inefficiencies. In addition we show that such a scheme can be used to enhance the transmission fidelity of a class of noisy channels

    Experimental continuous variable cloning of partial quantum information

    Get PDF
    The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of coherent states with prior partial information. More specifically, we propose two simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent cloning schemes relying on simple linear optics and feedforward.Comment: Submitted to PR

    Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography

    Get PDF
    Objective The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Material and Methods Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (

    Nonunity gain minimal-disturbance measurement

    Get PDF
    We propose and experimentally demonstrate an optimal non-unity gain Gaussian scheme for partial measurement of an unknown coherent state that causes minimal disturbance of the state. The information gain and the state disturbance are quantified by the noise added to the measurement outcomes and to the output state, respectively. We derive the optimal trade-off relation between the two noises and we show that the trade-off is saturated by non-unity gain teleportation. Optimal partial measurement is demonstrated experimentally using a linear optics scheme with feed-forward.Comment: 12 page

    Universal optical amplification without nonlinearity

    Full text link
    We propose and experimentally realize a new scheme for universal phase-insensitive optical amplification. The presented scheme relies only on linear optics and homodyne detection, thus circumventing the need for nonlinear interaction between a pump field and the signal field. The amplifier demonstrates near optimal quantum noise limited performance for a wide range of amplification factors.Comment: 5 pages, 4 figure

    Continuous-variable quantum erasure correcting code

    Get PDF

    Environmental Assisted Quantum Information Correction for Continuous Variables

    Get PDF
    Quantum information protocols are inevitably affected by decoherence which is associated with the leakage of quantum information into an environment. In this paper we address the possibility of recovering the quantum information from an environmental measurement. We investigate continuous variable quantum information, and we propose a simple environmental measurement that under certain circumstances fully restores the quantum information of the signal state although the state is not reconstructed with unit fidelity. We implement the protocol for which information is encoded into conjugate quadratures of coherent states of light and the noise added under the decoherence process is of Gaussian nature. The correction protocol is tested using both a deterministic as well as a probabilistic strategy. The potential use of the protocol in a continuous variable quantum key distribution scheme as a means to combat excess noise is also investigated.Comment: Submitted to PR

    Experimental Demonstration of Squeezed State Quantum Averaging

    Get PDF
    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.Comment: 4 pages, 5 figure
    corecore