130 research outputs found

    Assessment of Atmospheric Deposition and Spatial Variability of Trace Metals in Kandy City and Suburbs using Bio-monitoring Technique in Mosses

    Get PDF
    Deposition of atmospheric Trace metals (TMs) was investigated in this study through the analysis of mosses that have been grown at nine locations within the Kandy Municipal Council area and its suburbs. Hyophila sp. moss was selected for TM analysis with referring their common availability. After cleaning, dried mosses samples were digested with conc. HNO3 in microwave digesting system. Digested samples were analysed for Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb using Inductive Coupled Plasma-Mass Spectrometry (ICP-MS). Average TM concentrations in mosses, were resulted with the order of Fe>Al>Zn>Mn>Cu> Pb> Cr>Ni>Cd. The highest and lowest metal concentrations were recorded for Al and Cd as 12,150 and 0.2 mg/kg respectively. Principle factor analysis suggested two major factors; vehicular emission and geographical location, responsible for the TM concentrations in mosses. Factor analysis indicated that approximately about 73% of the TMs in the atmosphere are by the two factors whereas majority from that to be from the vehicular emission. Apart from that, trans-boundary pollution could identify as one of the major factors for TMs in Kandy. Spatial distributions are not significant for the metals that have identified as geogenic origin and others were reported with clear spatial distribution with having highest accumulations in the areas those experiencing higher traffic activities. The ecosystem risk values are still in the acceptable levels in the means of trace metals in mosses. Key words: mosses, bio-monitoring, trace metals, atmospheric depositio

    Benefits of Biochar Addition in a Sustainable Agriculture Practice: Soil Nutrients Dynamics, Enzyme Activities and Plant Growth

    Get PDF
    Biochar is a carbon-rich material resulting from the pyrolysis of plant and animal biomass. Biochar has a long history as a soil amendment for centuries since the Mayan civilization. Attaining sustainability in agriculture is not easy; however, the addition of biochar may reduce the adverse effects of numerous malpractices in conventional agriculture. Biochar benefits soil physicochemical properties such as soil bulk density, aggregate stability, porosity, water holding capacity and soil organic carbon content. However, it is essential to focus on the negative aspects of biochar in terms of atmospheric emissions during the production and occupational health and safety at the time of use. Still, there are many benefits and detriments of the application of biochar, i.e., the priming effect; thus, this review highlights the importance of further research on the application of biochar as a soil amendment. It has been understood that the lack of long-term field studies in various soils using commercially produced biochar may restrict the knowledge of biochar's true potential and effect on soil nutrient dynamics, microbial structure, and crop yield. Keywords: Land degradation, Biochar, Nutrient retention, Soil quality, Microbial communit

    Influence of Soil Water Content and Soil Amendments on Trace Metal Release and Seedling Growth in Serpentine Soil

    Get PDF
    This study was conducted to evaluate the synergistic effects of organic amendments and soil water status on trace metal release from serpentine soil

    Heavy Metal-Induced Oxidative Stress on Seed Germination and Seedling Development: A Critical Review

    Get PDF
    Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research

    Role of Bacterial-Fungal Interactions on Heavy Metal Phytotoxicity in Serpentine Soil

    Get PDF
    This study was conducted to understand the role of bacterial–fungal interactions on heavy metal uptake by Zea mays plants. A pot experiment was conducted for 90 days with Z. mays in serpentine soil inoculated with a Gram-negative bacterium, fungus (Aspergilllus sp.) and both microbes to determine the effects of inoculation on nickel, manganese, chromium and cobalt concentrations in plant tissue and soil. Soil nutrients and soil enzyme activities were measured to determine the effect of inoculations on soil quality. Inoculation of microorganisms increased shoot and root biomass, and the maximum biomass was in the bacterial–fungal inoculation. This could be due to the solubilisation of phosphate and production of indole acetic acid. Although the combination treatment contributed to an increase in heavy metal uptake in Z. mays plants, the lowest translocation was observed in the combination treatment. Moreover, the soil available nitrogen, available phosphorous and total organic carbon content were increased with the microbial inoculation. Similarly, the soil dehydrogenase activity was higher as a result of microbial inoculation, whereas the highest dehydrogenase activity was reported in the combination inoculation. This study confirms the synergistic effect of bacterial–fungal inoculation as a soil-quality enhancer and as a plant-growth promoter in the presence of heavy metals

    Анализ рынка коммерческой недвижимости города Минска и его развитие / Логинович П.П.,ГИУСТ БГУ,кафедра управления недвижимостью;науч.рук. канд. экон. наук Ю. В. Минковская

    Get PDF
    Arsenic (As) is an emerging contaminant on a global scale posing threat to environmental and human health. The relatively brief history of the applications of biochar and bone char has mapped the endeavors to remove As from water to a considerable extent. This critical review attempts to provide a comprehensive overview for the first time on the potential of bio- and bone-char in the immobilization of inorganic As in water. It seeks to offer a rational assessment of what is existing and what needs to be done in future research as an implication for As toxicity of human health risks through acute and chronic exposure to As contaminated water. Bio- and bone-char are recognized as promising alternatives to activated carbon due to their lower production and activation cost. The surface modification via chemical methods has been adopted to improve the adsorption capacity for anionic As species. Surface complexation, ion exchange, precipitation and electrostatic interactions are the main mechanisms involved in the adsorption of As onto the char surface. However, arsenic-bio-bone char interactions along with their chemical bonding for the removal of As in aqueous solution is still a subject of debate. Hence, the proposed mechanisms need to be scrutinized further using advanced analytical techniques such as synchrotron-based X-ray. Moving this technology from laboratory phase to field scale applications is an urgent necessity in order to establish a sustainable As mitigation in drinking water on a global scale

    Insights into Starch Coated Nanozero Valent Iron-Graphene Composite for Cr(VI) Removal from Aqueous Medium

    Get PDF
    Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI)

    Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport

    Get PDF
    Microplastics are well known for vector transport of hydrophobic organic contaminants, and there are growing concerns regarding their potential adverse effects on ecosystems and human health. However, recent studies focussing on hydrophilic compounds, such as pharmaceuticals and personal care products (PPCPs), have shown that the compounds ability to be adsorbed onto plastic surfaces. The extensive use of PPCPs has led to their ubiquitous presence in the environment resulting in their cooccurrence with microplastics. The partitioning between plastics and PPCPs and their fate through vector transport are determined by various physicochemical characteristics and environmental conditions of specific matrices. Although the sorption capacities of microplastics for different PPCP compounds have been investigated extensively, these findings have not yet been synthesized and analyzed critically. The specific objectives of this review were to synthesize and critically assess the various factors that affect the adsorption of hydrophilic compounds such as PPCPs on microplastic surfaces and their fate and transport in the environment. The review also focuses on environmental factors such as pH, salinity, and dissolved organics, and properties of polymers and PPCP compounds, and the relationships with sorption dynamics and mechanisms. Furthermore, the ecotoxicological effects of PPCP-sorbed microplastics on biota and human health are also discussed

    Inhibitory Effect of Veterinary Antibiotics on Denitrification in Groundwater: A Microcosm Approach

    Get PDF
    Veterinary antibiotics in groundwater may affect natural microbial denitrification process. A microcosm study was conducted to evaluate the influence of sulfamethazine and chlortetracycline at different concentrations (0, 0.01, 0.1, and 1.0 mg/L) on nitrate reduction in groundwater under denitrifying condition. Decrease in nitrate removal and nitrite production was observed with the antibiotics. Maximum inhibition of nitrate removal was observed after seven days of incubation with 0.01 mg/L sulfamethazine (17.0%) and 1.0 mg/L chlortetracycline (15.4%). The nitrite production was inhibited with 1.0 mg/L sulfamethazine to 82.0% and chlortetracycline to 31.1%. The initial/final nitrate concentrations indicated that 0.01 mg/L sulfamethazine and 1.0 mg/L chlortetracycline were most effective in inhibiting activity of denitrifying bacteria in groundwater. After 12 days of incubation, the sulfamethazine biodegradation was observed whereas chlortetracycline was persistent. Sulfamethazine and chlortetracycline in groundwater could inhibit the growth and capability of naturally occurring denitrifying bacteria, thereby threatening nitrate pollution in groundwater

    Hydrometallurgical processes for heavy metals recovery from industrial sludges

    Get PDF
    Hydrometallurgical approaches have been successfully employed for metal separation and recovery from various types of waste materials. Therefore, hydrometallurgy is a promising technology for metal recovery and the removal of potentially toxic heavy metals found in industrial sludge. However, a comprehensive review that focuses on the heavy metal recovery from industrial sludge using hydrometallurgical approaches has not been conducted in the recent past. The present review discusses the capacity of hydrometallurgical techniques in recovering heavy metals sourced from different types of industrial sludges, highlighting recent scientific findings. Hydrometallurgical approaches primarily consist of three process stages: metal dissolution, concentration and purification, and metal recovery. The chemical characteristics of industrial sludge, including the type, concentration and speciation of heavy metals, directly impact selection of the best recovery method. Solvent extraction, ion-exchange, and adsorption are the major techniques employed in concentration and purification, whereas electrodeposition and precipitation are the main methods used in metals recovery. Future research should focus on the development of more efficient and environmentally-friendly methods for metal dissolution from industrial sludges contaminated with multiple metals, while increasing selectivity and energy use efficiency in the concentration and purification, and recovery steps
    corecore