67 research outputs found

    Tomographic imaging and scanning thermal microscopy: thermal impedance tomography

    Get PDF
    The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from both simulated and real data are given

    Individualized everolimus treatment for tuberous sclerosis-related angiomyolipoma promotes treatment adherence and response

    Get PDF
    Background Everolimus is a potential alternative to embolization and nephrectomy for managing tuberous sclerosis complex (TSC)-associated renal angiomyolipoma (AML). In 2016, National Health Service England approved its use through regional centres for renal AML ≥30 mm showing interval growth. Evidence of lesion stabilization or reduction after 6 months is mandated for continuation of long-term treatment. Methods From November 2016 to June 2021, all potentially eligible adult TSC patients with AML across Yorkshire and Humber were referred for assessment and monitoring. Eligible patients underwent baseline renal magnetic resonance imaging (MRI) assessment and a follow-up MRI scan after 6 months on everolimus. Dose titration was guided by trough levels and lesion responsiveness using a new 3D MRI volumetric protocol. Results Of 28 patients commencing treatment, 19 tolerated everolimus for >3 months. Overall, 11 patients (40%) discontinued treatment, mostly due to recurrent infections (42%) and allergic reactions (25%). Sixty-eight percent required dose adjustments from the initiating dose (10 mg) due to sub-optimal trough levels (38%), minimal AML response (15%) or adverse events (47%). 3D volumetric assessment confirmed a reduction in AML volume of a pre-selected index lesion in all treatment-naïve cases (n = 14), showing superiority over 2D measurements of lesion diameter. Conclusion In this cohort, everolimus promoted AML regression in all patients who tolerated the drug for >6 months with stabilization observed over 3 years. Trough levels enabled individual dose titration to maximize responsiveness and minimize side effects. The use of 3D MRI assessment of lesion volume was superior to 2D measurements of lesion diameter in monitoring treatment response

    Development of a rapid semi-automated tool to measure total kidney volume in autosomal dominant polycystic kidney disease

    Get PDF
    Background Total kidney volume (TKV) is an approved early prognostic marker of progression in autosomal dominant polycystic kidney disease. The approval of tolvaptan for patients with rapid disease progression in Europe requires accurate patient stratification. Current methods of TKV measurement rely on manual segmentation which is time consuming, restricting its clinical use. To address this important clinical challenge we report the development and performance of a semi-automated method (Sheffield TKV tool) to measure TKV in patients with this disease. Methods 1.5T MRI scans were acquired (Siemens Avanto) in 61 adult patients with autosomal dominant polycystic kidney disease. Manual segmentation of the kidneys was performed on T2 true fast imaging with steady state precession MRI. Computational semi-automated segmentation methods were tested in a subgroup of ten patients and the optimum method used in all 61 cases to measure TKV (mL). Manual and semi-automated results were compared by Bland–Altman analyses. Processing time for manual and semi-automated methods were recorded. Findings Our cohort consisted of 29 men and 32 women (mean age 45 years, SD 14). Estimated GFR (eGFR) in patients within 1 month of the MRI ranged between 32 and 138 mL/min. TKV measured by manual segmentation ranged between 258 and 3680 mL. The Sheffield TKV tool performed optimally for calculating TKV, reporting accurate results in 80% of cases compared with manual TKV. Inaccuracies were associated with erroneous inclusion of blood vessels, the renal hilum, or leakage into neighbouring tissues, and overall were more frequent in smaller kidneys. Processing time for TKV with the Sheffield TKV tool was 2–5 min compared with 20–30 min for manual segmentation. Interpretation We describe a new rapid, semi-automated method for measuring TKV on MRI which should be a useful tool for evaluating patients with autosomal dominant polycystic kidney disease. We plan to optimise MRI acquisition sequences and extract the renal hilar volume to improve performance of the Sheffield TKV tool and validate it in another population with autosomal dominant polycystic kidney disease, with the ultimate aim of using it in clinical practice. Funding Insigneo (Institute for in silico medicine) bursary (from Sheffield Teaching Hospitals NHS Foundation Trust), National Institute for Health Research

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Left ventricular fibrosis and hypertrophy are associated with mortality in heart failure with preserved ejection fraction

    Get PDF
    Cardiac magnetic resonance (CMR) is emerging as an important tool in the assessment of heart failure with preserved ejection fraction (HFpEF). This study sought to investigate the prognostic value of multiparametric CMR, including left and right heart volumetric assessment, native T1-mapping and LGE in HFpEF. In this retrospective study, we identified patients with HFpEF who have undergone CMR. CMR protocol included: cines, native T1-mapping and late gadolinium enhancement (LGE). The mean follow-up period was 3.2 ± 2.4 years. We identified 86 patients with HFpEF who had CMR. Of the 86 patients (85% hypertensive; 61% males; 14% cardiac amyloidosis), 27 (31%) patients died during the follow up period. From all the CMR metrics, LV mass (area under curve [AUC] 0.66, SE 0.07, 95% CI 0.54–0.76, p = 0.02), LGE fibrosis (AUC 0.59, SE 0.15, 95% CI 0.41–0.75, p = 0.03) and native T1-values (AUC 0.76, SE 0.09, 95% CI 0.58–0.88, p  133.24 g (hazard ratio [HR] 1.58, 95% CI 1.1–2.2, p  34.86% (HR 1.77, 95% CI 1.1–2.8, p = 0.01) and native T1 > 1056.42 ms (HR 2.36, 95% CI 0.9–6.4, p = 0.07). In multivariate cox regression, CMR score model comprising these three variables independently predicted mortality in HFpEF when compared to NTproBNP (HR 4 vs HR 1.65). In non-amyloid HFpEF cases, only native T1 > 1056.42 ms demonstrated higher mortality (AUC 0.833, p < 0.01). In patients with HFpEF, multiparametric CMR aids prognostication. Our results show that left ventricular fibrosis and hypertrophy quantified by CMR are associated with all-cause mortality in patients with HFpEF

    Electrical impedance tomography system: an open access circuit design

    Get PDF
    BACKGROUND: This paper reports a simple 2-D system for electrical impedance tomography EIT, which works efficiently and is low cost. The system has been developed in the Sharif University of Technology Tehran-Iran (for the author's MSc Project). METHODS: The EIT system consists of a PC in which an I/O card is installed with an external current generator, a multiplexer, a power supply and a phantom with an array of electrodes. The measurement system provides 12-bit accuracy and hence, suitable data acquisition software has been prepared accordingly. The synchronous phase detection method has been implemented for voltage measurement. Different methods of image reconstruction have been used with this instrument to generate electrical conductivity images. RESULTS: The results of simulation and real measurement of the system are presented. The reconstruction programs were written in MATLAB and the data acquisition software in C++. The system has been tested with both static and dynamic mode in a 2-D domain. Better results have been produced in the dynamic mode of operation, due to the cancellation of errors. CONCLUSION: In the spirit of open access publication the design details of this simple EIT system are made available here

    Pulmonary hypertension in association with lung disease : quantitative CT and artificial intelligence to the rescue? State-of-the-art review

    Get PDF
    Accurate phenotyping of patients with pulmonary hypertension (PH) is an integral part of informing disease classification, treatment, and prognosis. The impact of lung disease on PH outcomes and response to treatment remains a challenging area with limited progress. Imaging with computed tomography (CT) plays an important role in patients with suspected PH when assessing for parenchymal lung disease, however, current assessments are limited by their semi-qualitative nature. Quantitative chest-CT (QCT) allows numerical quantification of lung parenchymal disease beyond subjective visual assessment. This has facilitated advances in radiological assessment and clinical correlation of a range of lung diseases including emphysema, interstitial lung disease, and coronavirus disease 2019 (COVID-19). Artificial Intelligence approaches have the potential to facilitate rapid quantitative assessments. Benefits of cross-sectional imaging include ease and speed of scan acquisition, repeatability and the potential for novel insights beyond visual assessment alone. Potential clinical benefits include improved phenotyping and prediction of treatment response and survival. Artificial intelligence approaches also have the potential to aid more focused study of pulmonary arterial hypertension (PAH) therapies by identifying more homogeneous subgroups of patients with lung disease. This state-of-the-art review summarizes recent QCT developments and potential applications in patients with PH with a focus on lung disease

    Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements

    Get PDF
    BACKGROUND: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. METHODS: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). RESULTS: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. CONCLUSION: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality

    Fully automatic cardiac four chamber and great vessel segmentation on CT pulmonary angiography using deep learning

    Get PDF
    Introduction: Computed tomography pulmonary angiography (CTPA) is an essential test in the work-up of suspected pulmonary vascular disease including pulmonary hypertension and pulmonary embolism. Cardiac and great vessel assessments on CTPA are based on visual assessment and manual measurements which are known to have poor reproducibility. The primary aim of this study was to develop an automated whole heart segmentation (four chamber and great vessels) model for CTPA. Methods: A nine structure semantic segmentation model of the heart and great vessels was developed using 200 patients (80/20/100 training/validation/internal testing) with testing in 20 external patients. Ground truth segmentations were performed by consultant cardiothoracic radiologists. Failure analysis was conducted in 1,333 patients with mixed pulmonary vascular disease. Segmentation was achieved using deep learning via a convolutional neural network. Volumetric imaging biomarkers were correlated with invasive haemodynamics in the test cohort. Results: Dice similarity coefficients (DSC) for segmented structures were in the range 0.58–0.93 for both the internal and external test cohorts. The left and right ventricle myocardium segmentations had lower DSC of 0.83 and 0.58 respectively while all other structures had DSC >0.89 in the internal test cohort and >0.87 in the external test cohort. Interobserver comparison found that the left and right ventricle myocardium segmentations showed the most variation between observers: mean DSC (range) of 0.795 (0.785–0.801) and 0.520 (0.482–0.542) respectively. Right ventricle myocardial volume had strong correlation with mean pulmonary artery pressure (Spearman's correlation coefficient = 0.7). The volume of segmented cardiac structures by deep learning had higher or equivalent correlation with invasive haemodynamics than by manual segmentations. The model demonstrated good generalisability to different vendors and hospitals with similar performance in the external test cohort. The failure rates in mixed pulmonary vascular disease were low (<3.9%) indicating good generalisability of the model to different diseases. Conclusion: Fully automated segmentation of the four cardiac chambers and great vessels has been achieved in CTPA with high accuracy and low rates of failure. DL volumetric biomarkers can potentially improve CTPA cardiac assessment and invasive haemodynamic prediction

    Evaluating the performance of artificial intelligence software for lung nodule detection on chest radiographs in a retrospective real-world UK population

    Get PDF
    Objectives Early identification of lung cancer on chest radiographs improves patient outcomes. Artificial intelligence (AI) tools may increase diagnostic accuracy and streamline this pathway. This study evaluated the performance of commercially available AI-based software trained to identify cancerous lung nodules on chest radiographs. Design This retrospective study included primary care chest radiographs acquired in a UK centre. The software evaluated each radiograph independently and outputs were compared with two reference standards: (1) the radiologist report and (2) the diagnosis of cancer by multidisciplinary team decision. Failure analysis was performed by interrogating the software marker locations on radiographs. Participants 5722 consecutive chest radiographs were included from 5592 patients (median age 59 years, 53.8% women, 1.6% prevalence of cancer). Results Compared with radiologist reports for nodule detection, the software demonstrated sensitivity 54.5% (95% CI 44.2% to 64.4%), specificity 83.2% (82.2% to 84.1%), positive predictive value (PPV) 5.5% (4.6% to 6.6%) and negative predictive value (NPV) 99.0% (98.8% to 99.2%). Compared with cancer diagnosis, the software demonstrated sensitivity 60.9% (50.1% to 70.9%), specificity 83.3% (82.3% to 84.2%), PPV 5.6% (4.8% to 6.6%) and NPV 99.2% (99.0% to 99.4%). Normal or variant anatomy was misidentified as an abnormality in 69.9% of the 943 false positive cases. Conclusions The software demonstrated considerable underperformance in this real-world patient cohort. Failure analysis suggested a lack of generalisability in the training and testing datasets as a potential factor. The low PPV carries the risk of over-investigation and limits the translation of the software to clinical practice. Our findings highlight the importance of training and testing software in representative datasets, with broader implications for the implementation of AI tools in imaging
    • …
    corecore