99 research outputs found

    METAREP: JCVI metagenomics reports—an open source tool for high-performance comparative metagenomics

    Get PDF
    Summary: JCVI Metagenomics Reports (METAREP) is a Web 2.0 application designed to help scientists analyze and compare annotated metagenomics datasets. It utilizes Solr/Lucene, a high-performance scalable search engine, to quickly query large data collections. Furthermore, users can use its SQL-like query syntax to filter and refine datasets. METAREP provides graphical summaries for top taxonomic and functional classifications as well as a GO, NCBI Taxonomy and KEGG Pathway Browser. Users can compare absolute and relative counts of multiple datasets at various functional and taxonomic levels. Advanced comparative features comprise statistical tests as well as multidimensional scaling, heatmap and hierarchical clustering plots. Summaries can be exported as tab-delimited files, publication quality plots in PDF format. A data management layer allows collaborative data analysis and result sharing

    Child saliva microbiota and caries: a randomized controlled maternal education trial in rural Uganda

    Get PDF
    Throne Holst Foundation and the Centre for Global Health at the University of Oslo’s Research ExceLlence and Innovation in Global HealTh (RELIGHT) programmepublishedVersio

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    ANDES: Statistical tools for the ANalyses of DEep Sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advancements in DNA sequencing technologies have allowed researchers to progress from the analyses of a single organism towards the deep sequencing of a sample of organisms. With sufficient sequencing depth, it is now possible to detect subtle variations between members of the same species, or between mixed species with shared biomarkers, such as the 16S rRNA gene. However, traditional sequencing analyses of samples from largely homogeneous populations are often still based on multiple sequence alignments (MSA), where each sequence is placed along a separate row and similarities between aligned bases can be followed down each column. While this visual format is intuitive for a small set of aligned sequences, the representation quickly becomes cumbersome as sequencing depths cover loci hundreds or thousands of reads deep.</p> <p>Findings</p> <p>We have developed ANDES, a software library and a suite of applications, written in Perl and R, for the statistical ANalyses of DEep Sequencing. The fundamental data structure underlying ANDES is the position profile, which contains the nucleotide distributions for each genomic position resultant from a multiple sequence alignment (MSA). Tools include the root mean square deviation (RMSD) plot, which allows for the visual comparison of multiple samples on a position-by-position basis, and the computation of base conversion frequencies (transition/transversion rates), variation (Shannon entropy), inter-sample clustering and visualization (dendrogram and multidimensional scaling (MDS) plot), threshold-driven consensus sequence generation and polymorphism detection, and the estimation of empirically determined sequencing quality values.</p> <p>Conclusions</p> <p>As new sequencing technologies evolve, deep sequencing will become increasingly cost-efficient and the inter and intra-sample comparisons of largely homogeneous sequences will become more common. We have provided a software package and demonstrated its application on various empirically-derived datasets. Investigators may download the software from Sourceforge at <url>https://sourceforge.net/projects/andestools</url>.</p

    Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill

    Get PDF
    The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using (14)C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of (14)C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem

    Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome

    Get PDF
    Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/human​n. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies.National Institutes of Health (U.S.) (U54HG004968

    Complete Genome Sequence of the N2-Fixing Broad Host Range Endophyte Klebsiella pneumoniae 342 and Virulence Predictions Verified in Mice

    Get PDF
    We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels
    corecore