223 research outputs found

    Radiological examination of the spine and fitness for work as a helicopter pilot

    Get PDF
    On the matter of spinal fitness for piloting, standards are proposed that suit the critical spinal segments proper to different jobs. Involved here are primarily pilots of combat airplanes and of helicopters. Fitness for one of these does not necessarily mean fitness for the other

    Vertebral pain in helicopter pilots

    Get PDF
    Pathological forms of spinal pain engendered by piloting helicopters were clinically studied. Lumbalgia and pathology of the dorsal and cervical spine are discussed along with their clinical and radiological signs and origins

    High Speed Magnetic Tweezers at 100KHz with Superluminescent Diode Illumination

    Get PDF
    In the last decade, various applications of gaseous exchange measurements have been developed to quantify the production or consumption of particular gases by animals. Notably, booming research into methane emissions has led to an expansion of the number of facilities in which such measurements are made. Results of a ring test calibration of respiration chambers in the UK by Gardiner et al. (2015) confirmed our concern that not all research groups comply with the same standards of chamber operation

    Effect of body fat distribution on the transcription response to dietary fat interventions

    Get PDF
    Combination of decreased energy expenditure and increased food intake results in fat accumulation either in the abdominal site (upper body obesity, UBO) or on the hips (lower body obesity, LBO). In this study, we used microarray gene expression profiling of adipose tissue biopsies to investigate the effect of body fat distribution on the physiological response to two dietary fat interventions. Mildly obese UBO and LBO male subjects (n = 12, waist-to-hip ratio range 0.93–1.12) were subjected to consumption of diets containing predominantly either long-chain fatty acids (PUFA) or medium-chain fatty acids (MCT). The results revealed (1) a large variation in transcription response to MCT and PUFA diets between UBO and LBO subjects, (2) higher sensitivity of UBO subjects to MCT/PUFA dietary intervention and (3) the upregulation of immune and apoptotic pathways and downregulation of metabolic pathways (oxidative, lipid, carbohydrate and amino acid metabolism) in UBO subjects when consuming MCT compared with PUFA diet. In conclusion, we report that despite the recommendation of MCT-based diet for improving obesity phenotype, this diet may have adverse effect on inflammatory and metabolic status of UBO subjects. The body fat distribution is, therefore, an important parameter to consider when providing personalized dietary recommendation

    Phenotype Selection Reveals Coevolution of Muscle Glycogen and Protein and PTEN as a Gate Keeper for the Accretion of Muscle Mass in Adult Female Mice

    Get PDF
    We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice

    A Gestational High Protein Diet Affects the Abundance of Muscle Transcripts Related to Cell Cycle Regulation throughout Development in Porcine Progeny

    Get PDF
    BACKGROUND: In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS: To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP) or 12% (adequate protein--AP) throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi) was collected at 94 days post conception (dpc), and 1, 28, and 188 days post natum (dpn) for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION: Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the transcriptome. The transcriptome modulations are interpreted as the molecular equivalent of developmental plasticity of the offspring that necessitates adaptation and maintenance of the organismal phenotype
    corecore