5,469 research outputs found
Laser cooling of new atomic and molecular species with ultrafast pulses
We propose a new laser cooling method for atomic species whose level
structure makes traditional laser cooling difficult. For instance, laser
cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while
multielectron atoms need single-frequency light at many widely separated
frequencies. These restrictions can be eased by laser cooling on two-photon
transitions with ultrafast pulse trains. Laser cooling of hydrogen,
antihydrogen, and many other species appears feasible, and extension of the
technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR
Coulomb crystallization in expanding laser-cooled neutral plasmas
We present long-time simulations of expanding ultracold neutral plasmas,
including a full treatment of the strongly coupled ion dynamics. Thereby, the
relaxation dynamics of the expanding laser-cooled plasma is studied, taking
into account elastic as well as inelastic collisions. It is demonstrated that,
depending on the initial conditions, the ionic component of the plasma may
exhibit short-range order or even a superimposed long-range order resulting in
concentric ion shells. In contrast to ionic plasmas confined in traps, the
shell structures are built up from the center of the plasma cloud rather than
from the periphery
Universality and Critical Behavior at the Mott transition
We report conductivity measurements of Cr-doped V2O3 using a variable
pressure technique. The critical behavior of the conductivity near the
Mott-insulator to metal critical endpoint is investigated in detail as a
function of pressure and temperature. The critical exponents are determined, as
well as the scaling function associated with the equation of state. The
universal properties of a liquid-gas transition are found. This is potentially
a generic description of the Mott critical endpoint in correlated electron
materials.Comment: 3 figure
Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits
We analyze two configurations for laser cooling of neutral atoms whose
internal states store qubits. The atoms are trapped in an optical lattice which
is placed inside a cavity. We show that the coupling of the atoms to the damped
cavity mode can provide a mechanism which leads to cooling of the motion
without destroying the quantum information.Comment: 12 page
Pinning an Ion with an Intracavity Optical Lattice
We report one-dimensional pinning of a single ion by an optical lattice. The
lattice potential is produced by a standing-wave cavity along the rf-field-free
axis of a linear Paul trap. The ion's localization is detected by measuring its
fluorescence when excited by standing-wave fields with the same period, but
different spatial phases. The experiments agree with an analytical model of the
localization process, which we test against numerical simulations. For the best
localization achieved, the ion's average coupling to the cavity field is
enhanced from 50% to 81(3)% of its maximum possible value, and we infer that
the ion is bound in a lattice well with over 97% probability.Comment: 5 pages, 4 figures; Text edited for clarity, results unchange
Two-Level Systems in Evaporated Amorphous Silicon
In -beam evaporated amorphous silicon (-Si), the densities of two-level
systems (TLS), and , determined from specific heat
and internal friction measurements, respectively, have been shown to
vary by over three orders of magnitude. Here we show that and
are proportional to each other with a constant of
proportionality that is consistent with the measurement time dependence
proposed by Black and Halperin and does not require the introduction of
additional anomalous TLS. However, and depend strongly
on the atomic density of the film () which depends on both film
thickness and growth temperature suggesting that the -Si structure is
heterogeneous with nanovoids or other lower density regions forming in a dense
amorphous network. A review of literature data shows that this atomic density
dependence is not unique to -Si. These findings suggest that TLS are not
intrinsic to an amorphous network but require a heterogeneous structure to
form
Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns
The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The overall objective of the field campaigns was to obtain data needed to better understand processes that affect both climate and air quality, including emission assessments, transport and chemical aging of aerosols, aerosol radiative effects. Simulations were performed that examined the sensitivity of aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. We found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics quantifying the differences between observed and simulated quantities. Comparisons with lidar and in situ measurements indicate that long-range transport of aerosols from the global model was likely too high in the free troposphere even though their concentrations were relatively low. This bias led to an over-prediction in aerosol optical depth by as much as a factor of 2 that offset the under-predictions of boundary-layer extinction resulting primarily from local emissions. Lowering the boundary conditions of aerosol concentrations by 50% greatly reduced the bias in simulated aerosol optical depth for all regions of California. This study shows that quantifying regional-scale variations in aerosol radiative forcing and determining the relative role of emissions from local and distant sources is challenging during 'clean' conditions and that a wide array of measurements are needed to ensure model predictions are correct for the right reasons. In this regard, the combined CalNex and CARES data sets are an ideal test bed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes
Bio-economic evaluation of pasture-cropping, a novel system of integrating perennial pastures and crops on crop-livestock farms
Pasture-cropping is a novel approach to increase the area of perennial crops in mixed sheep and cropping systems. It involves planting annual cereals directly into a living perennial pasture. There is interest in subtropical grasses as they are winter dormant and their growth profile is potentially well suited to pasture-cropping. However, a wide range of factors can affect the uptake of such systems. This paper assesses the relative importance of factors that can influence decisions to introduce pasture-cropping. In this paper the research question is: what factors predispose a farm to take up a new technology such as (1) subtropical grass and (2) subtropical grass that is pasture-cropped. The analysis uses the MIDAS model of a central wheatbelt farm in Western Australia. The results suggest the adoption of subtropical grasses is likely to be strongly influenced by soil mix; feed quality; and whether the farm is predominantly grazing or cropping and by the presence of meat versus wool producing animals. The same factors are relevant for subtropical grass that is pasture-cropped but in addition yield penalties due to competition between the host perennial and the companion cereal become important. The results suggest the level of forage production by subtropical grass is less important but this factor is likely to become more important if feed quality can be improved.Environmental Economics and Policy,
Radical political unionism reassessed
Defections from European social-democratic parties and a resurgence of union militancy have prompted some to diagnose a new left-wing trade unionism across Europe. This comment on the article by Connolly and Darlington scrutinizes trends in France and Germany but primarily analyses recent developments in Britain. While there are some instances of disaffiliation from the Labour Party, support for electoral alternatives, growth in political militancy and emphasis on new forms of internationalism, these have been limited. There is insufficient evidence to suggest that we are witnessing the making of a new radical collectivism
Fermi Surface of Metallic VO from Angle-Resolved Photoemission: Mid-level Filling of Bands
Using angle resolved photoemission spectroscopy (ARPES) we report the first
band dispersions and distinct features of the bulk Fermi surface (FS) in the
paramagnetic metallic phase of the prototypical metal-insulator transition
material VO. Along the -axis we observe both an electron pocket and
a triangular hole-like FS topology, showing that both V 3 and
states contribute to the FS. These results challenge the existing
correlation-enhanced crystal field splitting theoretical explanation for the
transition mechanism and pave the way for the solution of this mystery.Comment: 5 pages, 4 figures plus supplement 12 pages, 3 figures, 1 tabl
- …