4,324 research outputs found

    Bituminous Concrete Surfaces

    Get PDF

    Two-Level Systems in Evaporated Amorphous Silicon

    Full text link
    In ee-beam evaporated amorphous silicon (aa-Si), the densities of two-level systems (TLS), n0n_{0} and P\overline{P}, determined from specific heat CC and internal friction Q1Q^{-1} measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that n0n_{0} and P\overline{P} are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, n0n_{0} and P\overline{P} depend strongly on the atomic density of the film (nSin_{\rm Si}) which depends on both film thickness and growth temperature suggesting that the aa-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to aa-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form

    Pinning an Ion with an Intracavity Optical Lattice

    Full text link
    We report one-dimensional pinning of a single ion by an optical lattice. The lattice potential is produced by a standing-wave cavity along the rf-field-free axis of a linear Paul trap. The ion's localization is detected by measuring its fluorescence when excited by standing-wave fields with the same period, but different spatial phases. The experiments agree with an analytical model of the localization process, which we test against numerical simulations. For the best localization achieved, the ion's average coupling to the cavity field is enhanced from 50% to 81(3)% of its maximum possible value, and we infer that the ion is bound in a lattice well with over 97% probability.Comment: 5 pages, 4 figures; Text edited for clarity, results unchange

    Coulomb crystallization in expanding laser-cooled neutral plasmas

    Full text link
    We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation dynamics of the expanding laser-cooled plasma is studied, taking into account elastic as well as inelastic collisions. It is demonstrated that, depending on the initial conditions, the ionic component of the plasma may exhibit short-range order or even a superimposed long-range order resulting in concentric ion shells. In contrast to ionic plasmas confined in traps, the shell structures are built up from the center of the plasma cloud rather than from the periphery

    Laser cooling of new atomic and molecular species with ultrafast pulses

    Full text link
    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR

    Laser Phase and Frequency Stabilization Using Atomic Coherence

    Full text link
    We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.Comment: 7 pages, 6 figures, appendix on the derivation of Eq.(3) (transfer function for a polarization-spectroscopy-based frequency discriminator) has been adde

    Filling of the Mott-Hubbard gap in the high temperature photoemission spectrum of (V_0.972Cr_0.028)_2O_3

    Full text link
    Photoemission spectra of the paramagnetic insulating (PI) phase of (V_0.972Cr_0.028)_2O_3, taken in ultra high vacuum up to the unusually high temperature (T) of 800 K, reveal a property unique to the Mott-Hubbard (MH) insulator and not observed previously. With increasing T the MH gap is filled by spectral weight transfer, in qualitative agreement with high-T theoretical calculations combining dynamical mean field theory and band theory in the local density approximation.Comment: 4 pages, 4 figure

    Narrow Line Cooling and Momentum-Space Crystals

    Full text link
    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm 1S0 - 3P1 narrow line cooling of atomic 88Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to continuously bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling process, some of which are intimately linked to gravity, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.Comment: 14 pages, 19 figure

    Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits

    Full text link
    We analyze two configurations for laser cooling of neutral atoms whose internal states store qubits. The atoms are trapped in an optical lattice which is placed inside a cavity. We show that the coupling of the atoms to the damped cavity mode can provide a mechanism which leads to cooling of the motion without destroying the quantum information.Comment: 12 page

    State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

    Get PDF
    Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
    corecore