74 research outputs found

    Annual Report: 2010-2011 Storm Season Sampling For NON-DRY DOCK STORMWATER MONITORING FOR PUGET SOUND NAVAL SHIPYARD, BREMERTON, WA

    Get PDF
    This interim report summarizes the stormwater monitoring conducted for non-dry dock outfalls in both the confined industrial area and the residential areas of Naval Base Kitsap within the Puget Sound Naval Shipyard (referred to as the Shipyard). This includes the collection, analyses, and descriptive statistics for stormwater sampling conducted from November 2010 through April 2011. Seven stormwater basins within the Shipyard were sampled during at least three storm events to characterize non-dry dock stormwater discharges at selected stormwater drains located within the facility. This serves as the Phase I component of the project and Phase II is planned for the 2011-2012 storm season. These data will assist the Navy, USEPA, Ecology and other stakeholders in understanding the nature and condition of stormwater discharges from the Shipyard and inform the permitting process for new outfall discharges. The data from Phase I was compiled with current stormwater data available from the Shipyard, Sinclair/Dyes Inlet watershed, and Puget Sound in order to support technical investigations for the Draft NPDES permit. The permit would require storm event sampling at selected stormwater drains located within the Shipyard. However, the data must be considered on multiple scales to truly understand potential impairments to beneficial uses within Sinclair and Dyes Inlets

    Annual Report: 2011-2012 Storm Season Sampling, Non-Dry Dock Stormwater Monitoring for Puget Sound Naval Shipyard, Bremerton, WA

    Get PDF
    Annual PSNS non-dry dock storm water monitoring results for 2011-2012 storm season. Included are a brief description of the sampling procedures, storm event information, laboratory methods and data collection, a results and discussion section, and the conclusions and recommendations

    Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism

    Get PDF
    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPbeta. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPbeta expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPbeta expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPbeta expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis

    Adipocyte ACLY Facilitates Dietary Carbohydrate Handling to Maintain Metabolic Homeostasis in Females

    Get PDF
    Sugars and refined carbohydrates are major components of the modern diet. ATP-citrate lyase (ACLY) is upregulated in adipocytes in response to carbohydrate consumption and generates acetyl-coenzyme A (CoA) for both lipid synthesis and acetylation reactions. Here, we investigate the role of ACLY in the metabolic and transcriptional responses to carbohydrates in adipocytes and unexpectedly uncover a sexually dimorphic function in maintaining systemic metabolic homeostasis. When fed a high-sucrose diet, Acly(FAT-/-) females exhibit a lipodystrophy-like phenotype, with minimal fat accumulation, insulin resistance, and hepatic lipid accumulation, whereas Acly(FAT-/-) males have only mild metabolic phenotypes. We find that ACLY is crucial for nutrient-dependent carbohydrate response element-binding protein (ChREBP) activation in adipocytes and plays a key role, particularly in females, in the storage of newly synthesized fatty acids in adipose tissue. The data indicate that adipocyte ACLY is important in females for the systemic handling of dietary carbohydrates and for the preservation of metabolic homeostasis

    Snapshots of human anatomy, locomotion, and behavior from Late Pleistocene footprints at Engare Sero, Tanzania

    Full text link
    Fossil hominin footprints preserve data on a remarkably short time scale compared to most other fossil evidence, offering snapshots of organisms in their immediate ecological and behavioral contexts. Here, we report on our excavations and analyses of more than 400 Late Pleistocene human footprints from Engare Sero, Tanzania. The site represents the largest assemblage of footprints currently known from the human fossil record in Africa. Speed estimates show that the trackways reflect both walking and running behaviors. Estimates of group composition suggest that these footprints were made by a mixed-sex and mixed-age group, but one that consisted of mostly adult females. One group of similarly oriented trackways was attributed to 14 adult females who walked together at the same pace, with only two adult males and one juvenile accompanying them. In the context of modern ethnographic data, we suggest that these trackways may capture a unique snapshot of cooperative and sexually divided foraging behavior in Late Pleistocene humans

    Cancer metabolism: current perspectives and future directions

    Get PDF
    Cellular metabolism influences life and death decisions. An emerging theme in cancer biology is that metabolic regulation is intricately linked to cancer progression. In part, this is due to the fact that proliferation is tightly regulated by availability of nutrients. Mitogenic signals promote nutrient uptake and synthesis of DNA, RNA, proteins and lipids. Therefore, it seems straight-forward that oncogenes, that often promote proliferation, also promote metabolic changes. In this review we summarize our current understanding of how ‘metabolic transformation' is linked to oncogenic transformation, and why inhibition of metabolism may prove a cancer′s ‘Achilles' heel'. On one hand, mutation of metabolic enzymes and metabolic stress sensors confers synthetic lethality with inhibitors of metabolism. On the other hand, hyperactivation of oncogenic pathways makes tumors more susceptible to metabolic inhibition. Conversely, an adequate nutrient supply and active metabolism regulates Bcl-2 family proteins and inhibits susceptibility to apoptosis. Here, we provide an overview of the metabolic pathways that represent anti-cancer targets and the cell death pathways engaged by metabolic inhibitors. Additionally, we will detail the similarities between metabolism of cancer cells and metabolism of proliferating cells

    S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate.

    Get PDF
    R-2-hydroxyglutarate accumulates to millimolar levels in cancer cells with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both metabolite enantiomers, R- and S-2-hydroxyglutarate, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that 2-hydroxyglutarate accumulates in mouse CD8+ T cells in response to T-cell receptor triggering, and accumulates to millimolar levels in physiological oxygen conditions through a hypoxia-inducible factor 1-alpha (HIF-1α)-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8+ T-cell differentiation in response to this metabolite. Modulation of histone and DNA demethylation, as well as HIF-1α stability, mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8+ T cells. Thus, S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, through a metabolic-epigenetic axis, to immune fate and function

    A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules

    Get PDF
    Prostate specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase overexpressed in many forms of prostate cancer. Our laboratory has recently disclosed a class of small molecules, called ARM-Ps (antibody-recruiting molecule targeting prostate cancer) that are capable of enhancing antibody-mediated immune recognition of prostate cancer cells. Interestingly, during the course of these studies, we found ARM-Ps to exhibit extraordinarily high potencies toward PSMA, compared to previously reported inhibitors. Here, we report in-depth biochemical, crystallographic, and computational investigations which elucidate the origin of the observed affinity enhancement. These studies reveal a previously unreported arene-binding site on PSMA, which we believe participates in an aromatic stacking interaction with ARMs. Although this site is composed of only a few amino acid residues, it drastically enhances small molecule binding affinity. These results provide critical insights into the design of PSMA-targeted small molecules for prostate cancer diagnosis and treatment; more broadly, the presence of similar arene-binding sites throughout the proteome could prove widely enabling in the optimization of small-molecule–protein interactions
    corecore