1,255 research outputs found
Discontinuities in recurrent neural networks
This paper studies the computational power of various discontinuous
real computational models that are based on the classical analog
recurrent neural network (ARNN). This ARNN consists of finite number
of neurons; each neuron computes a polynomial net-function and a
sigmoid-like continuous activation-function.
The authors introducePostprint (published version
Circular product design. A multiple loops life cycle design approach for the circular economy
The circular economy is a high priority subject of discussion in the current political and academic contexts; however, practical approaches in relevant disciplines like design are in need of development. This article proposes a conceptual framework for circular product design, based on four multiple loops strategies: (I) design to slow the loops, (II) design to close the loops, (III) design for bio-inspired loops, and (IV) design for bio-based loops. Recent literature, notably on life cycle design strategies, the circular economy conceptual model and the European Commission’s Circular Economy Package, is reviewed and product design cases illustrating each of the proposed are analysed. The article argues that different ‘circular’ approaches centred upon the life cycle design phases can provide practical guiding strategies during the design process and thus promote sustainable design solutions for the circular economy within the United Nation’s sustainable development goals
Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications
Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other field
Popular matchings with two-sided preferences and one-sided ties
We are given a bipartite graph where each vertex has a
preference list ranking its neighbors: in particular, every ranks its
neighbors in a strict order of preference, whereas the preference lists of may contain ties. A matching is popular if there is no matching
such that the number of vertices that prefer to exceeds the number of
vertices that prefer to~. We show that the problem of deciding whether
admits a popular matching or not is NP-hard. This is the case even when
every either has a strict preference list or puts all its neighbors
into a single tie. In contrast, we show that the problem becomes polynomially
solvable in the case when each puts all its neighbors into a single
tie. That is, all neighbors of are tied in 's list and desires to be
matched to any of them. Our main result is an algorithm (where ) for the popular matching problem in this model. Note that this model
is quite different from the model where vertices in have no preferences and
do not care whether they are matched or not.Comment: A shortened version of this paper has appeared at ICALP 201
- …