9 research outputs found

    Controlling the cut in contour residual stress measurements of electron beam welded Ti-6Al-4V alloy plates

    No full text
    The multiple cut contour method is applied to map longitudinal and transverse components of residual stress in two nominally identical 50 mm thick electron beam welded Ti-6Al-4V alloy plates, one in the as-welded condition and a second welded plate in a post weld heat treated (PWHT) condition. The accuracy and resolution of the contour method results are directly linked to the quality of the electro-discharge machining cut made. Two symmetric surface contour artefacts associated with cutting titanium, surface bowing and a flared edge, are identified and their influence on residual stresses calculated by the contour method is quantified. The former artefact is controlled by undertaking a series of cutting trials with reduced power settings to find optimal cutting conditions. The latter is mitigated by attaching 5 mm thick sacrificial plates to the wire exit side of the test specimen. The low level of noise in the measured stress profiles for both the as-welded and PWHT plates demonstrates the importance of controlling the quality of a contour cut and the added value of undertaking cutting trials

    Data from: Life-history plasticity in female threespine stickleback

    No full text
    The postglacial adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus) has been widely used to investigate the roles of both adaptive evolution and plasticity in behavioral and morphological divergence from the ancestral condition represented by present-day oceanic stickleback. These phenotypes tend to exhibit high levels of ecotypic differentiation. Population divergence in life history has also been well studied, but in contrast to behavior and morphology, the extent and importance of plasticity has been much less well studied. In this review, we summarize what is known about life-history plasticity in female threespine stickleback, considering four traits intimately associated with reproductive output: age/size at maturation, level of reproductive effort, egg size and clutch size. We envision life-history plasticity in an iterative, ontogenetic framework, in which females may express plasticity repeatedly across each of several time frames. We contrast the results of laboratory and field studies because, for most traits, these approaches give somewhat different answers. We provide ideas on what the cues might be for observed plasticity in each trait and, when possible, we inquire about the relative costs and benefits to expressed plasticity. We end with an example of how we think plasticity may play out in stickleback life history given what we know of plasticity in the ancestor

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    Life-history plasticity in female threespine stickleback

    No full text
    corecore