37 research outputs found

    A biologically inspired neural network controller for ballistic arm movements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented.</p> <p>Methods</p> <p>The developed system is composed of three main computational blocks: 1) a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2) a pulse generator, which is responsible for the creation of muscular synergies; and 3) a limb model based on two joints (two degrees of freedom) and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans.</p> <p>Results</p> <p>The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians.</p> <p>Curvature values are similar to those encountered in experimental measures with humans.</p> <p>The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector.</p> <p>Conclusion</p> <p>The proposed system has been shown to properly simulate the development of internal models and to control the generation and execution of ballistic planar arm movements. Since the neural controller learns to manage movements on the basis of kinematic information and arm characteristics, it could in perspective command a neuroprosthesis instead of a biomechanical model of a human upper limb, and it could thus give rise to novel rehabilitation techniques.</p

    Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina

    Get PDF
    Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects

    Relationship between nano-architectured Ti1−xCux thin film and electrical resistivity for resistance temperature detectors

    Get PDF
    Ti1−xCux thin films were produced by the glancing angle deposition technique (GLAD) for resistance temperature measurements. The deposition angle was fixed at α = 0° to growth columnar structures and α = 45° to growth zigzag structures. The Ti-to-Cu atomic concentration was tuned from 0 to 100 at.% of Cu in order to optimize the temperature coefficient of resistance (TCR) value. Increasing the amount of Cu in the Ti1−xCux thin films, the electrical conductivity was gradually changed from 4.35 to 7.87 × 105 Ω−1 m−1. After thermal “stabilization,” the zigzag structures of Ti1−xCux films induce strong variation of the thermosensitive response of the materials and exhibited a reversible resistivity versus temperature between 35 and 200 °C. The results reveal that the microstructure has an evident influence on the overall response of the films, leading to values of TCR of 8.73 × 10−3 °C−1 for pure copper films and of 4.38 × 10−3 °C−1 for a films of composition Ti0.49Cu0.51. These values are very close to the ones reported for the bulk platinum (3.93 × 10−3 °C−1), which is known to be one of the best material available for these kind of temperature-related applications. The non-existence of hysteresis in the electrical response of consecutive heating and cooling steps indicates the viability of these nanostructured zigzag materials to be used as thermosensitive sensors.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and Project PTDC/EEI-SII/5582/2014. A. Ferreira and C. Lopes thanks the FCT for Grant SFRH/BPD/102402/2014 and SFRH/BD/103373/2014. The authors thank financial support from the Basque Government Industry Department under the ELKARTEK Programinfo:eu-repo/semantics/publishedVersio

    Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models

    Get PDF
    Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies

    Specific versus Non-Specific Immune Responses in an Invertebrate Species Evidenced by a Comparative de novo Sequencing Study

    Get PDF
    Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5′-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5′-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses

    Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity

    Get PDF
    Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2)

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context
    corecore