124 research outputs found
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Azimuthal anisotropy at RHIC: the first and fourth harmonics
We report the first observations of the first harmonic (directed flow, v_1),
and the fourth harmonic (v_4), in the azimuthal distribution of particles with
respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion
Collider (RHIC). Both measurements were done taking advantage of the large
elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it
is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data
tables are at
http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
Strange anti-particle to particle ratios at mid-rapidity in sqrt(s_NN)= 130 GeV Au+Au Collisions
Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71
+/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05
(sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092
+/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au
collisions using the STAR detector. The ratios indicate that a fraction of the
net-baryon number from the initial system is present in the excess of hyperons
over anti-hyperons at mid-rapidity. The trend in the progression of the baryon
ratios, with increasing strange quark content, is similar to that observed in
heavy-ion collisions at lower energies. The value of these ratios may be
related to the charged kaon ratio in the framework of simple quark-counting and
thermal models.Comment: 6 pages, 3 figures, revtex4, now accepted by Physics Letters B. All
figures improved for clarity, fig. 2 now has kaon ratio separated by
technique, fig. 3 now has additional other RHIC data points. Minor
clarifications in text in response to referee comments. Updated ref
Event-wise ⟨p\u3csub\u3et\u3c/sub\u3e⟩ fluctuations in Au-Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 130 GeV
We present the first large-acceptance measurement of event-wise mean transverse momentum ⟨pt⟩ fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy √sNN = 130 GeV. The observed nonstatistical ⟨pt⟩ fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise ⟨pt⟩ distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range |η|c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported ⟨pt⟩ fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to ⟨pt⟩ fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed
Event-wise ⟨p\u3csub\u3et\u3c/sub\u3e⟩ fluctuations in Au-Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 130 GeV
We present the first large-acceptance measurement of event-wise mean transverse momentum ⟨pt⟩ fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy √sNN = 130 GeV. The observed nonstatistical ⟨pt⟩ fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise ⟨pt⟩ distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range |η|c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported ⟨pt⟩ fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to ⟨pt⟩ fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed
Serum ferritin in term and preterm infants
Serum ferritin levels were examined in maternal serum, In cord sera and at one, four, eight and twelve weeks in 19 term and 28 preterm infants. There was no correlation between maternal and cord ferritin levels. Mean serum ferritin concentration was lower in preterm infants, and both term and preterm Infants exhibited' an initial rise in serum ferritin concentration followed by a steady fall. Serum ferritin concentration showed a good correlation with calculated iron stores at twelve weeks of age suggesting that serum ferritin estimation is the method of choice for monitoring body iron stores in infants. No correlation was found between serum ferritin concentration and calculated iron intake at any age in either term or preterm infants. It is suggested that iron supplementation additional to that present in modified cow's milk is not necessary for the first twelve weeks of life in either term or preterm infants
- …