775 research outputs found

    Femtosecond Self-Reconfiguration of Laser-Induced Plasma Patterns in Dielectrics

    Get PDF
    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. So far, the local and dynamic nature of the interactions between plasma and light needed to correctly explain nanograting fabrication on dielectric surfaces has been missing in the theoretical models. With our numerical approach, we show that a self-consistent dynamic treatment of the plasma formation and its interaction with light triggers an ultrafast reconfiguration of the periodic plasma patterns on a field-cycle time scale. Within this framework, a simple stability analysis of the local interactions explains how the laser-induced plasma patterns change their orientation with respect to the incident light polarization, when a certain energy density threshold is reached. Moreover, the reconfigured sub-wavelength plasma structures grow into the bulk of the sample and agree with the experimental findings of self-organized volume nanogratings. Mode coupling of the incident and transversally scattered light with the periodic plasma structures is sufficient to initiate the growth and the self-organization of the characteristic pattern with a periodicity of a half-wavelength in the medium.Comment: 8 pages, 7 figure

    Laser-induced dewetting of silver-doped chalcogenide glasses

    Get PDF
    We report the observation of laser-induced dewetting responsible for the formation of periodic relief structures in silver-based chalcogenide thin-films. By varying the concentration of silver in the Agx(As20S80)100-x system (with x = 0, 4, 9 and 36), different surface relief structures are formed. The evolution of the surface changes as a function of laser parameters (power density, duration of exposure, and polarisation) as well as film thickness and silver concentration has been investigated. The scanning electron microscopy and atomic force microscopy images of irradiated spots show periodic ripples aligned perpendicularly to the electric field of incident light. Our results show that addition of silver into sulphur-rich chalcogenide thin-films improves the dewetting when compared to pure As20S80 thinfilms. The changes in surface morphology were attributable to photo-induced chemical modifications and a laser-driven molecular rearrangement

    Fluoride glasses : synthesis and properties

    Get PDF
    The discovery of heavy metal fluoride glasses has opened new prospects for fiber optics operating beyond 2 ”m with expected losses less than 10(-2) dB/Km. The main interest of fluoride glasses lies in their infrared transmission up to 8 ”m in the bulk form and 4.5 ”m for optical fibers. We have reported here the preparation, the glass forming systems and properties of heavy metal fluoride glasses

    Optical transition probabilites and compositional dependence of Judd-Ofelt parameters of Er3+ ions in fluoroindate glass

    Get PDF
    Fluoroindate glasses containing 1, 2, 3, and 4 mol% ErF3 were prepared in a dry box under an argon atmosphere. Absorption spectra of these glasses at room temperature were obtained. The Judd-Ofelt parameters Omegalambda (lambda = 2, 4, 6) for f-f transitions of Er3+ ions as well as transition probabilities, branching ratios, radiative lifetimes, and peak cross-sections for stimulated emission of each band were determined. The concentration effect on the intensities is analyzed. The optical properties of the fluoroindate glasses doped with Er3+ ions are compared with those of other glasses described in the literature

    Wearable contactless respiration sensor based on multi-material fibers integrated into textile

    Get PDF
    In this paper, we report on a novel sensor for the contactless monitoring of the respiration rate, made from multi-material fibers arranged in the form of spiral antenna (2.45 GHz central frequency). High flexibility of the used composite metal-glass-polymer fibers permits their integration into a cotton t-shirt without compromising comfort or restricting movement of the user. At the same time, change of the antenna geometry, due to the chest expansion and the displacement of the air volume in the lungs, is found to cause a significant shift of the antenna operational frequency, thus allowing respiration detection. In contrast with many current solutions, respiration is detected without attachment of the electrodes of any kind to the user’s body, neither direct contact of the fiber with the skin is required. Respiration patterns for two male volunteers were recorded with the help of a sensor prototype integrated into standard cotton t-shirt in sitting, standing, and lying scenarios. The typical measured frequency shift for the deep and shallow breathing was found to be in the range 120–200 MHz and 10–15 MHz, respectively. The same spiral fiber antenna is also shown to be suitable for short-range wireless communication, thus allowing respiration data transmission, for example, via the Bluetooth protocol, to mobile handheld devices

    The role of Bi2O3 on the thermal, structural and optical properties of tungsten-phosphate glasses

    Get PDF
    Glasses in the ternary system (70 – x)NaPO3-30WO3-xBi2O3, with x = 0–30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi2O3 on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, Tg, increases from 405 to 440 °C for 0 ≀ x ≀ 15 mol % and decreases to 417 °C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 °C with the increase of the Bi2O3 content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi–O–P linkage. Furthermore, up to 15 mol % of Bi2O3 formation of BiO6 clusters is observed, associated with Bi–O–Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q0 units. The linear refractive index, n0, was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n2 was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≀ n0 ≀ 1.88, n2 ≄ 10–15 cm2/W and NL absorption coefficient, α2 ≀ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi2O3 concentration. The large values of n0 and n2, as well as the very small α2, indicate that these materials have large potential for all-optical switching applications in the near-infrared

    Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding

    Get PDF
    Silicon subwavelength grating waveguides enable flexible design in integrated photonics through nano-scale refractive index engineering. Here, we explore the possibility of combining silicon subwavelength gratings waveguides with a high-index chalcogenide glass as a top cladding, thus modifying the waveguiding behavior and opening a new design axis for these structures. A detailed investigation of the heterogeneous SWG waveguide with high-index cladding is presented based on analytical and numerical simulations. We design, fabricate and characterize silicon subwavelength grating waveguide microring resonators with an As20S80 cladding. Thanks to As20S80 negative thermo-optic coefficient, we achieve near athermal behavior with a measured minimum thermally induced resonance shift of −1.54 pm/K, highlighting the potential of subwavelength grating waveguides for modal confinement engineering and to control light-matter interaction. We also show that the chalcogenide glass can be thermally reflowed to remove air gaps inside the cladding, resulting in a highly conformal structure. These types of waveguides can find application in reconfigurable photonics, nonlinear optics, metamaterials or slow light

    Templated dewetting for self-assembled ultra low-loss chalcogenide integrated photonics

    Get PDF
    Integrated photonics is of growing interest but relies on complex fabrication methods that have yet to match optical losses of bulkier platforms like optical fibers or whispering gallery mode resonators. Spontaneous matter reorganization phenomenon (e.g. dewetting) in thin-films provides a way for self-assembled structures with atomic scale surface rugosity, potentially alleviating the problems of roughness scattering loss and fabrication complexity. In this article, we study solid-state dewetting in chalcogenide glass thin-films and demonstrate its applicability to the fabrication of high-quality integrated photonics components. Optimal dewetting parameters are derived from a comprehensive experimental study of thin-film properties under high temperature rapid annealing. Atomic scale surface roughness are obtained using dewetting, with RMS values as low as Rq = 0.189 nm. Several integrated photonics components are fabricated using the method and characterized. We show that the use of pre-patterned templates leads to organized, reproducible patterns with large-scale uniformity and demonstrate the record high quality-factor of 4.7 × 106 in compact (R = 50 ”m) microdisks, corresponding to 0.08 dB⋅cm−1 waveguide propagation loss. The integrated devices are directly fabricated on standard silicon-on-insulator dice using the micro-trench filling technique and coupled to silicon waveguides, making them readily deployable with existing silicon devices and systems

    Perfect vortex modes for nondestructive characterization of mode dependent loss in ring core fibers

    Get PDF
    Ring core fibers (RCF) enable high-performance modal multiplexing with low crosstalk and can support orbital angular momentum (OAM) modes. RCFs are challenging to characterize due to the lack of commercial multiplexers, especially for high OAM orders. For fibers supporting large numbers of modes, typical cutback techniques for characterization are extremely wasteful of fiber, especially as one cutback is required for each mode. We show the differential modal loss across modes 3 to 10 was significantly underestimated using an OTDR when exciting modes individually or when exciting all modes indiscriminately. We exploit perfect vortex beams to achieve reliable and nondestructive characterization of mode-dependent loss (MDL) for OAM modes. Perfect vortex beams allow us to maximize the coupling efficiency at each mode launch, increasing the accuracy of MDL estimate. We fabricated fiber with a refractive index difference between the ring core and the cladding of a 5.1×10⁻ÂČ. For this fiber, mode orders 3 to 10 are the most suitable for data transmission and were the focus of our work (the fiber support up to OAM order 13). Such a high index difference can lead to MDL. We demonstrate that the modal loss spans from 2.14 to 4.38 dB/km for orders 3 to 10

    Orbital-angular-momentum polarization mode dispersion in optical fibers

    Get PDF
    The orbital-angular-momentum (OAM) modes in optical fibers have polarization mode dispersion (PMD) properties similar to those of single-mode fibers (SMFs). The +l and -l order OAM modes supported by the same fiber vector modes undergo random cross coupling and exhibit a frequency-dependent time delay. We name this effect “OAM-PMD” and extend the formalism developed for PMD in SMFs to describe OAM-PMD. The characteristics of the modal beat lengths, birefringence correlation lengths, and the mean value of OAM-PMD are investigated. A fixed-analyzer technique is proposed and demonstrated to characterize this phenomenon in OAM fibers. Two different types of OAM fiber are examined. The measured results are compared with the theoretical calculations
    • 

    corecore