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Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics
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Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration
of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest
that the local and dynamic nature of the interactions between light and the transient plasma plays an important
role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting
formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma
buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding
of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic
plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached.
Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show
that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees
with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the
incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and
self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.
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I. INTRODUCTION

Laser micromachining of transparent material by femtosec-
ond pulses promises fast integration of two-dimensional (2D)
and 3D nanophotonic and nanofluidic devices with tailored
properties [1–4]. Exposition of solid materials to intense
laser radiation typically gives rise to complex light-matter
interaction processes such as high harmonic generation [5],
ionization avalanche breakdown [6], and ultrafast plasma
dynamics [7]. Such nonlinear light-matter interaction pro-
cesses are often associated with instabilities that lead to the
formation of periodic surface and bulk patterns [8,9]. Thus
far, static surface mode analysis has successfully explained
the origin and characteristics of periodic patterns formed on
laser-processed metals and semiconductors [9,10]. However, a
better understanding of femtosecond laser-plasma interaction
dynamics is necessary to explain nanograting formation in
dielectrics, where predictions from current theoretical models
are inconsistent with respect to experimental observations on
several important aspects.

Extensive experimental and theoretical studies have ex-
amined a number of laser-induced nanostructures that arise
from the interaction between intense femtosecond laser pulses
and materials. In particular, laser-induced periodic surface
structures (LIPSS) have been studied with a model proposed
by Sipe [11] and explained as the result of interference patterns
between the incident light and static surface modes triggered
by surface inhomogeneities. A large number of experimentally

*Louis.Dube@phy.ulaval.ca

observed LIPSS on lossy materials are correctly described
within this framework [10]. However, it lacks a proper account
of the plasma dynamics that characterizes the interaction
of intense femtosecond pulses with dielectrics. To account
for the plasma formation, an extended Sipe theory has been
explored [12,13], but in these studies the plasma is assumed
to be static and homogeneous, whereas during the ionization
of transparent materials the carrier density changes rapidly
in time and can exhibit significant spatial variations. For a
rigorous analysis, transient optical properties, referred to as
intrapulse feedback, have to be taken into account to allow
for self-interaction and therefore self-organization of plasma
patterns while the plasma is being formed.

Light-matter interaction feedback can also occur between
subsequent laser pulses, referred to as interpulse feedback
[14]. The target can be structurally modified by each laser
pulse by mechanisms such as ion removal, chemical bonding
reconfiguration, melting, hydrodynamic flow, crystallization,
amorphization, and so on [15,16]. The next laser pulses then
interact with these permanent modifications and interfere con-
structively or destructively with them [17]. Interpulse mecha-
nisms result from the inhomogeneous energy distribution after
irradiation, itself determined by intrapulse dynamics. There-
fore, laser-plasma interplay on the single-pulse scale has to be
fully understood first before attempting a complete description
of nanostructures fabricated with multiple laser pulses.

In the accepted interpretation, single-pulse energy deposi-
tion in metals or ionized materials occurs in two steps, where
energy is first transferred to free or nearly free electrons and
then from the free electrons to the lattice (see, e.g., [1,18]).
Accurate knowledge of the plasma distribution and dynamics
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is therefore important to understand the entire light-matter pro-
cess. This is particularly true in dielectrics, where the electron
density changes in time and is spatially inhomogeneous due to
the local nature of the underlying ionization processes.

Studies that accounted for the time and space dependence
of the plasma density reported self-organization of plasma
patterns in the bulk of dielectric materials [8,19]. However,
computer simulations with the proposed theoretical nanoplas-
monic model predict plasma growth in the direction opposite to
the laser propagation, with periodic width oscillations along the
same axis [20,21]. In contrast, experiments show that structures
grow toward the laser propagation direction with a constant
width [3].

In this work, we present a self-consistent dynamic treatment
of the interaction of a femtosecond laser pulse with a dielectric
medium. The spatiotemporal dependence of the light-induced
near-surface plasma density buildup and patterning was studied
within a three-dimensional electromagnetic framework. An
important result of this research is the observation of an
ultrafast reconfiguration of the plasma distribution, when the
conditions for self-organization are met. Moreover, through
an extended analysis, we obtain a bulk growth of the plasma
patterns in the same direction as the laser propagation with
constant width, in agreement with experimental observations
of volume nanogratings [3]. This correct plasma growth is
observed when intrapulse self-organization is dominated by
transverse scattering against transient plasma structures. In
comparison, in the current nanoplasmonic model, longitudinal
scattering is dominant, which seems to lead to incorrect predic-
tions. Our work confirms that a three-dimensional dynamical
treatment of the plasma density is crucial to extend the LIPSS
theory to transparent medium.

The paper is divided as follows. First in Sec. II, we
present the details of the numerical model and provide specific
simulation parameters. Then in Sec. III, we show how early-
interaction plasma patterns aligned along the laser pulse elec-
tric field reorient themselves within only a few femtoseconds,
when a certain fluence threshold is reached. In Sec. III A, we
discuss the robustness of the self-reorganization phenomena
with respect to various parameters and the simple ionization
model introduced in Sec. II. We further discuss in Sec. III B the
origin of the reorganized plasma patterns and show how they
grow in the bulk. In Sec. III C, we present a spectral analysis and
identify four distinct categories of patterns, some of which can
be explained with Sipe theory, whereas others are characteristic
of the electrodynamic model we present. Finally, conclusions
are given in Sec. IV.

II. NUMERICAL MODEL

A. Electromagnetic fields and currents

For this work, we build a phenomenological model of
the interaction of an intense femtosecond laser pulse with a
dielectric material. We used the finite-difference time-domain
(FDTD) method [22] to solve Maxwell equations

�∇ × �E = −μ0
∂ �H
∂t

, (1)

�∇ × �H = ε0
∂ �E
∂t

+ �J , (2)

where �E, �H , and �J are, respectively, the electric field, the
magnetic field, and the total electric current density. Self-
consistent material effects were included via three contributing
currents. (i) A current density from bound electrons,

�Jb = ε0
∂

∂t
(χ (1) �E + χ (3)| �E|2 �E), (3)

accounts for first- and third-order susceptibilities (see [23,24]
for details). (ii) The free-carrier current density,

∂ �Jf

∂t
= −γ �Jf + ε0ω

2
p

�E, (4)

accounts for the plasma optical response with ω2
p =

q2ρ/(ε0m
∗
e ), where m∗

e is the effective mass of the electron
and ρ is the time- and space-dependent plasma density. The
time integration of �Jf is explicitly implemented in our finite-
difference calculation with

�Jm+1
f = g1

g2

�Jm
f + ε0ω

2
pδt

g2

�Em, (5)

where m is the time step index, g1 = (1 − γ δt/2), g2 = (1 +
γ δt/2), and δt is the temporal discretization parameter. (iii)
The third current accounts for field energy losses due to field
ionization, calculated with

�JK = EgνK (ρmol − ρ)

| �E|2
�E, (6)

where Eg is the band gap of the transparent material, νK is the
field ionization rate, and ρmol is the molecular density. The total
current density is then calculated with �J = �Jb + �Jf + �JK .

B. Ionization mechanisms

Hereafter, we use a dimensionless plasma density by nor-
malizing with respect to the molecular density ρ̄ = ρ/ρmol.
Considering only the first ionization state, the plasma forma-
tion is calculated with

∂ρ̄

∂t
= (νK + νC)(1 − ρ̄), (7)

where the factor (1 − ρ̄) ensures that saturation is reached
when all molecules are ionized. The field ionization rate
νK accounts for multiphoton and tunnel ionization mecha-
nisms and is calculated with the Keldysh model adapted for
transparent material [25]. In our simulations, the Keldysh
parameter γK = ω

√
m∗Eg/(q| �E|) extends from values much

larger than 1 and γK ∼ 0.4, which, respectively, belong within
the multiphoton and the tunnel ionization regimes. This means
that both field ionization mechanisms are relevant and must be
accounted for.

A simple approach to calculate the collisional ionization
rate νC , the single rate equation (SRE) [6], considers that every
free electron can contribute to νC proportionally with the local
light intensity I (t) = cε0n| �E(t)|2, thus, νC = αρ̄I (t)/2 with
the collisional cross section α [26]. A more accurate model,
the multiple rate equations (MREs) [27], accounts for the
transient energy distribution of the electrons in the conduction
band (CB) and the impact rate between the most energetic
free electrons and neutral molecules that leads to collisional
ionization. The main difference when using MRE over SRE
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is the inhibition of collisional ionization for very short pulse
durations, for which free electrons do not have the time to
build up enough energy. Practically, this results in an implicit
dependency between the collisional cross section α and the
pulse duration τ . Because we do not study multiple pulse
durations, the use of MRE is not required here. We stress
that values of α used in the literature vary considerably. This
particular aspect is assessed in Sec. III A.

C. Material, geometry, and laser source

In our simulations, material parameters are chosen to repro-
duce the optical properties of fused silica: first- and third-order
susceptibilities χ (1) = 1.1025 (refractive index n = 1.45),
χ (3) = 2 × 10−18 cm2/V2, plasma damping γ = 1015 s−1, the
effective mass of the electron m∗

e = 0.8me, molecular density
ρmol = 2.2 × 1022 cm−3, and band gap Eg = 9 eV [28,29]. For
the collisional cross section, we first use the highest value found
in the literature, α = 10 cm2/J from [6], and then compare with
the results obtained when using α = 0 cm2/J.

The geometry of the simulations is schematized in Fig. 1.
The target is a square of side 4.8 μm with a thickness of 1 μm.
The laser source, expressed as

�E(t)|source = E0e
−(t/τ )2

sin(ωt)êx, (8)

is a plane wave linearly polarized along the x axis propagating
along the +z axis with a wavelength of λ = 2πc/ω = 800 nm.
Laser pulses have a Gaussian time envelope of duration τ =
10 fs. The laser fluence, defined as

F =
∫ ∞

−∞
I (t)dt =

√
π

2

cε0τ

2
E2

0 , (9)

τ = 10 fs λ = 800 nm x

y

z

4.8 μm

4
.8

μ
m

1.0 μm

(a) (b)

�k
�E

FIG. 1. Schematic illustration of the simulations. In (a), the laser
pulse is linearly polarized along the x axis and propagates toward the
+z axis. It hits, with normal incidence, a fused silica sample with a
rough surface, shown in (b).

is the energy per unit area. We ran simulations using fluence
values from 0.7 to 5 J/cm2.

Spatial discretization parameters are δx,y = 20 nm and δz =
2 nm. Surface roughness is mimicked by randomly adding 0–
20 nm of material over every discrete coordinate of the surface,
for an average height of 10 nm. The temporal discretization
δt = 6.33 × 10−3 fs is chosen to be below the instability regime
of the FDTD algorithm. The time domain extends from t =
−1.5τ to +1.5τ . To run the simulations, we used the open
software EPOCH [30], extended to include Eqs. (3)–(7).

III. SELF-RECONFIGURATION OF PLASMA PATTERNS

The most striking result obtained with the electrody-
namic model presented in Sec. II is the observation of an
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FIG. 2. Top row (a)–(d) Time evolution of the variations in plasma density ρ(x,y,z) (from blue minima to red maxima) at fixed depth
z = 140 nm with τ = 10 fs, α = 10 cm2/J, and F = 2.12 J/cm2 > Fth showing the structural transition from �‖ ∼ λ/n to �⊥ ∼ λ/2n.
Overlayed subfigures show the 2D Fourier transforms of the corresponding figure. Wave numbers in Fourier space �κ are all in units of λ−1.
(e) Ex (normalized with respect to E0) and ρ̄ averaged over the (x,y) plane at z = 140 nm. The blue shade indicates the amplitude of the
variations of ρ̄, magnified 10 times to make them more apparent on this scale. The black dots indicate the times of the snapshots (a)–(d).
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ultrafast reconfiguration of the plasma pattern occurring during
ionization (see Fig. 2). The plasma structures initially oriented
parallel (‖) to the laser polarization and with a periodicity �‖ ∼
λ/n change to orthogonal (⊥) structures with �⊥ ∼ λ/2n

within a few optical cycles, where n is the refractive index.
This transition occurs approximatively when the laser fluence
is high enough for the plasma to reach critical density, ρ̄c =
ε0m

∗ω2/q2 ∼ 6.3% (corresponding to ωp = ω), defining as
such a fluence threshold Fth. These two patterns are commonly
observed in experiments with dielectrics, and the theory has
never been able to account for both in a single framework.
Whereas LIPSS theory predicts the former pattern (�‖ ∼
λ/n), the nanoplasmonic model predicts the latter (�⊥ ∼
λ/2n).

In the early stage of the interaction [see Fig. 2(a)], the
plasma density is too low for the transient optical properties to
cause noticeable feedback and induce self-reorganization. In
this regime, Sipe’s static surface mode analysis [11] describes
correctly the early plasma growth and emergence of periodic
plasma patterns with �‖ ∼ λ/n. These structures result from
the interference between the incident light and the scattered
radiation off the surface inhomogeneities. However, as the
average carrier density increases and intrapulse feedback gets
stronger, these characteristic patterns gradually disappear [see
Figs. 2(b)–2(d)], ultimately to leave the stage to patterns
perpendicular to the laser polarization with �⊥ ∼ λ/2n. This
peculiar transition from one type of pattern to the other is
a direct consequence of the intrapulse feedback allowed by
our model. The origin and mechanisms behind this ultrafast
reorganization of the plasma is further discussed in Sec. III B.

A. Robustness

The results presented in this work are representative of a
broad parameter space. With wavelengths between 400 and
1200 nm, pulse durations between 5 and 250 fs, plasma
damping between 1014 and 1016 s−1, and effective mass of
the electron between 0.5me and 1.0me, we find that self-
reconfiguration consistently occurs for F > Fth. These param-
eter variations can indeed shift the absolute value of Fth, but
this does not affect the occurrence of the events around the
threshold, wherever it may be.

As shown in Fig. 2(e), most of the plasma is generated
through collisional ionization, which might be questionable
for such a short pulse duration τ [31]. However, we find that
the nature of the dominant ionization mechanism does not
affect significantly the self-reconfiguration process as the same
phenomena occurs at F > Fth after setting α = 0 cm2/J. The
same structures are indeed present in Fig. 3, where only field
ionization was possible. The value α = 10 cm2/J is therefore
used in the following sections.

As for field ionization, more advanced descriptions that
account for subcycle effects [32,33] that are absent from the
Keldysh formalism are under study. However, the fact that
the self-reconfiguration is consistently occurring, even when
driven by vastly different ionization mechanisms (field or
collisional ionization), suggests that it has a weak dependence
upon the specific description of plasma formation. Moreover,
the plasma structures obtained in our simulations agree with
experimental observations and results from previous models
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FIG. 3. Variations in plasma density ρ(x,y,z) (from blue minima
to red maxima) at fixed depth z = 140 nm with τ = 10 fs and F =
4.95 J/cm2 showing the structural transition from (a) �‖ ∼ λ/n to
(b) �⊥ ∼ λ/2n. The collisional cross section α is set to 0, so only
field ionization contributes for plasma formation. (c) Ex (normalized
with respect to E0) and ρ̄ averaged over the (x,y) plane at z = 140
nm. The blue shade indicates the amplitude of the variations of ρ̄,
magnified 10 times to make them more apparent on this scale. The
black dots indicate the times of the snapshots (a) and (b).

(in their respective limits), which also suggests that subcycle
ionization effects should not have a significant impact.

B. The role of reflections off the inhomogeneous plasma density

The electrostatic, nanoplasmonic model currently used to
explain the formation of periodic patterns in the bulk relies
on an initial distribution of nanovoids to initiate the growth of
self-organized plasma patterns with �⊥ ∼ λ/2n [8]. Recent
simulations [20,21] have shown that around these nanovoids,
spherical nanoplasmas initially grow, causing strong optical
reflections and the formation of standing waves along the
longitudinal direction. These standing waves are responsible
for further plasma growth in the direction opposite to the laser
propagation, in contradiction with experiments [3].

To test the role of longitudinal reflections in our simulations,
we have excluded the z component of �Jf in the full simulation
and obtained Fig. 4(a), where the self-organized and recon-
figured plasma structures of Fig. 2(d) are still present. This
means that self-organization can be achieved without the con-
tribution from longitudinal reflections, previously thought to
be necessary for the formation of bulk patterns [21]. In contrast,
transverse reflections along both orthogonal directions x and y

can also be turned off by averaging the free currents �Jf (x,y,z)
over the (x,y) plane, at every time step of the simulation. The
corresponding final plasma distribution is shown in Fig. 4(b).
It is almost identical to Fig. 2(a), which indicates that without
transverse reflections, pattern reconfiguration does not occur.
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FIG. 4. Final variations in plasma density ρ(x,y,z) (from blue
minima to red maxima) when reflections are turned off along (a) the
z axis or (b) the x and y axes. All parameters are identical to the ones
used in Fig. 2.

Reflections against local maxima in the plasma density
scatter light in the transverse plane. This scattered light couples
to the natural modes associated with the plasma density
patterns. The interplay between this transversely scattered
light, the plasma density, and the incident light may be additive
(positive feedback) or subtractive (negative feedback), which
leads to the growth or inhibition of periodic structures in
both the x and y directions. Therefore, the ultrafast pattern
reorganization shown in Fig. 2 can be explained by a metallic
waveguide approach, already believed to be linked to self-
organized plasma patterns (see, e.g., [34]).

A consequence of the dynamic laser-plasma interplay just
described is the self-inhibition, during ionization avalanche, of
the early ‖ structures shown in Figs. 2(a) and 5(a). We recall
that these types of structures, whose origin is explained by Sipe
[11], appear when the plasma density is low and intrapulse
interaction feedback is negligible. However, our simulations
show that these structures are dynamically suppressed when
the plasma approaches critical density. Our interpretation is
the following. (i) The local maxima of the early ‖ structures
effectively serve as waveguide boundaries within which the
lowest-order transverse electric (TE1) resonant modes develop.
(ii) The field distribution of these TE1 modes is maximum
halfway between the walls, where ionization is locally en-
hanced. The early plasma density distribution then becomes
anticorrelated with ionization, i.e., a negative feedback loop
drives the distribution toward a nearly flat equilibrium [see
Figs. 2(b), 2(c) and 5(b), where the ‖ structures have essentially
vanished].

In the orthogonal orientation, the plasma distribution is
initially flat in the bulk, as shown in Fig. 5(c). However,
this equilibrium becomes unstable when feedback starts to
manifest. As soon as the symmetry of the incident plane wave
breaks, some energy falls into the lowest-order nonuniform
transverse magnetic (TM1) resonant mode. Since the TM1

mode has antinodes located at the maxima of the local plasma
density, a positive feedback loop is thereby created, amplifying
⊥ structures [see Fig. 5(d)].

In the present simulations, the symmetry is broken when
light interacts with the surface roughness of the sample. In
real bulk interactions, volume defects could also break the
symmetry of the incident plane wave to deviate from the initial
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FIG. 5. Transverse views of the relative variations in the plasma
density (from blue minima to red maxima) generated with pulse
parameters τ = 10 fs and F = 2.12 J/cm2. First, a cut along the
y axis in the early ‖ structures (a) and in the final flat distribution (b)
caused by negative feedback with the propagated field. Second, a cut
along the x axis in the initially flat plasma distribution (c) and in the
final ⊥ structures (d) amplified by positive feedback.

and unstable flat plasma distribution. However, volume defects
cannot be responsible for most of the initial plasma formation,
as in the nanoplasmonic model, without causing the formation
of a strong standing wave along the propagation axis.

In summary, the early plasma structures grow without feed-
back and with a pattern correctly described by the Sipe theory
for transparent medium, that is, �‖ ∼ λ/n. When the plasma
approaches the critical density, transverse reflections gain in
importance and drive the formation of transverse resonant
light modes. Negative feedback between ‖ structures and a
TE mode essentially cancels the early plasma patterns. At the
same time, positive feedback between ⊥ structures and a TM
mode amplifies structural growth in a direction perpendicular
to the original orientation [see, again, Figs. 2(a)–2(d)].

C. The characteristics of the plasma patterns

We investigated the dependence of the plasma pattern
periods with respect to the laser fluence. To precisely measure
�⊥ and �‖, we first reduce the noise in the Fourier transforms
by averaging over 100 simulations, each with a reshuffled
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surface roughness, for several values of laser fluence. We then
use the maximal values along the κx and κy axes to calculate
the dominant periods �‖ = λ/(κy |max) or �⊥ = λ/(κx |max).
The results are displayed in Fig. 6, in which four qualitatively
distinct patterns are identified. Averaged Fourier transforms of
each distinct structure are displayed in Fig. 7.

From our numerical analysis, it is clear that the nature
of the final plasma patterns qualitatively changes around a
fluence threshold Fth ∼ 1.41 J/cm2. Below threshold, where
feedback is weak and static mode analysis applies, we observe
two distinct patterns (see Fig. 6). For z < 50 nm, we find
structures with �⊥ 	 λ (I) that fit the near-field interference
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FIG. 7. Averaged Fourier transforms of the four distinct structures
identified in Fig. 6. I and III are representative of below-threshold
results and are coherent with the Sipe theory. II and IV are represen-
tative of above-threshold results, after the self-reconfiguration of the
plasma patterns.

patterns [35], also present in the Sipe theory [36]. Deeper in
the sample, for z > 50 nm, structures with �‖ ∼ λ/n (III) fit
the far-field interference patterns in transparent media. The
spectral signature of these patterns is found in Fig. 7.

Above threshold, both near-field and far-field patterns shift
toward a preferred periodicity of �⊥ ∼ λ/2n (II and IV).
Since the plasma pattern self-reconfiguration is then dominated
by transverse reflections, the natural explanation for this
periodicity shift is the formation of standing waves along the x

axis [37]. Light deflected toward +x and −x interfere to form
a standing wave with antinodes separated by half-wavelengths
λ/2n at every maximum of the plasma density. The condition
for positive feedback is then met at this periodicity. It is
important to note that the standing-wave explanation is only
valid for single- or few-pulse expositions. In the multiple-pulse
regime, interpulse feedback mechanisms come into play and
have to be included explicitly.

IV. CONCLUSIONS

In conclusion, we have simulated the growth of laser-
induced plasma in the presence of dynamical intrapulse
feedback, absent from the current LIPSS theory. We have
demonstrated how the local and dynamic nature of the inter-
actions between plasma and light in a transparent medium is
responsible for an ultrafast femtosecond self-reconfiguration
of the near-surface periodic patterns. Our analysis suggests that
a 3D dynamical treatment of the plasma density is necessary to
properly describe laser-induced surface patterns on dielectrics
and the intrapulse feedback. We have provided a plausible
mechanism, based on a simple stability analysis of the local
feedback effects, that explains both the orientation and the
periodicity of the laser-induced plasma patterns. Finally, we
have demonstrated that self-organization of plasma structures,
in agreement with the characteristics of laser-induced volume
nanogratings, is possible without volume defects. We have
shown that transverse mode coupling is enough to initiate
the growth of the self-organized plasma structures when
transverse reflections dominate over longitudinal ones.
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