7 research outputs found

    In vitro analysis of the internal anatomy of lower incisors by cone beam computerized tomography

    Get PDF
    For the success of endodontic treatment, the knowledge of the internal anatomy becomes essential. Objective: to analyze the prevalence of lower incisor canals in a clinical and tomographic analysis. Material and methods: 148 lower incisors were used, measured, and evaluated through periapical radiograph and computed tomography. Results: in relation to the number of canals, 107 teeth(72.3%) presented a single canal, while 41 teeth (27.7%) presented two canals. Of the 41 teeth presenting 2 canals, 3 teeth presented independent canals (2.03%) and 38 teeth had 2 canals that joined at some point of the canal path (25.67%). Conclusion: The prevalence of two canals in the lower permanent human incisors was 27.7%; of these, 2.03% were independent. The main point of root canal union was at the apical third (20.94%). The most commonly found root canal shape was round in cervical third, flattened in middle third, and round in third apical.For the success of endodontic treatment, the knowledge of the internal anatomy becomes essential. Objective: to analyze the prevalence of lower incisor canals in a clinical and tomographic analysis. Material and methods: 148 lower incisors were used, measured, and evaluated through periapical radiograph and computed tomography. Results: in relation to the number of canals, 107 teeth(72.3%) presented a single canal, while 41 teeth (27.7%) presented two canals. Of the 41 teeth presenting 2 canals, 3 teeth presented independent canals (2.03%) and 38 teeth had 2 canals that joined at some point of the canal path (25.67%). Conclusion: The prevalence of two canals in the lower permanent human incisors was 27.7%; of these, 2.03% were independent. The main point of root canal union was at the apical third (20.94%). The most commonly found root canal shape was round in cervical third, flattened in middle third, and round in third apical

    Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information

    Full text link
    This paper presents the first publicly available version of the Carolina Corpus and discusses its future directions. Carolina is a large open corpus of Brazilian Portuguese texts under construction using web-as-corpus methodology enhanced with provenance, typology, versioning, and text integrality. The corpus aims at being used both as a reliable source for research in Linguistics and as an important resource for Computer Science research on language models, contributing towards removing Portuguese from the set of low-resource languages. Here we present the construction of the corpus methodology, comparing it with other existing methodologies, as well as the corpus current state: Carolina's first public version has 653,322,577653,322,577 tokens, distributed over 77 broad types. Each text is annotated with several different metadata categories in its header, which we developed using TEI annotation standards. We also present ongoing derivative works and invite NLP researchers to contribute with their own.Comment: 14 pages, 3 figures, 1 appendi

    In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon

    Full text link

    Environmental enrichment improved learning and memory, increased telencephalic cell proliferation, and induced differential gene expression in Colossoma macropomum

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Brazilian Research Council (CNPq) Edital Universal Grant 440722/2014-4 and Grant 302199/2014-4; Fundação Amazônia Paraense de Amparo à Pesquisa (FAPESPA), Grant Centro de Piscicultura do IFPA Campus Bragança and Núcleos Emergentes, Instituto Federal de Educação ciência e Tecnologia do Pará (IFPA), Editais APIPA 2018 e 2019 . DD and CD were supported by Programa PROCAD AMAZÔNIA/CAPES 88887.310939/2018-00.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil.Universidade Federal Rural da Amazônia. Instituto Ciências Agrárias. Capitão Poço, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Universidade Federal do Oeste do Pará. Laboratório de Fisiologia Ambiental Aplicada. Oriximiná, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Instituto Federal de Educação, Ciência e Tecnologia do Pará. Laboratório de Biologia Molecular e Neuroecologia. Bragança, PA, Brazil.Universidade Federal do Pará. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigação em Neurodegeneração e Infecção. Belém, PA, Brazil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Microscopia Eletrônica. Ananindeua, PA, Brasil.Fish use spatial cognition based on allocentric cues to navigate, but little is known about how environmental enrichment (EE) affects learning and memory in correlation with hematological changes or gene expression in the fish brain. Here we investigated these questions in Colossoma macropomum (Teleostei). Fish were housed for 192 days in either EE or in an impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-h/day water stream for voluntary exercise, whereas IE had no toys, plants, or water stream. A third plus maze aquarium was used for spatial and object recognition tests. Compared with IE, the EE fish showed greater learning rates, body length, and body weight. After behavioral tests, whole brain tissue was taken, stored in RNA-later, and then homogenized for DNA sequencing after conversion of isolated RNA. To compare read mapping and gene expression profiles across libraries for neurotranscriptome differential expression, we mapped back RNA-seq reads to the C. macropomum de novo assembled transcriptome. The results showed significant differential behavior, cell counts and gene expression in EE and IE individuals. As compared with IE, we found a greater number of cells in the telencephalon of individuals maintained in EE but no significant difference in the tectum opticum, suggesting differential plasticity in these areas. A total of 107,669 transcripts were found that ultimately yielded 64 differentially expressed transcripts between IE and EE brains. Another group of adult fish growing in aquaculture conditions were either subjected to exercise using running water flow or maintained sedentary. Flow cytometry analysis of peripheral blood showed a significantly higher density of lymphocytes, and platelets but no significant differences in erythrocytes and granulocytes. Thus, under the influence of contrasting environments, our findings showed differential changes at the behavioral, cellular, and molecular levels. We propose that the differential expression of selected transcripts, number of telencephalic cell counts, learning and memory performance, and selective hematological cell changes may be part of Teleostei adaptive physiological responses triggered by EE visuospatial and somatomotor stimulation. Our findings suggest abundant differential gene expression changes depending on environment and provide a basis for exploring gene regulation mechanisms under EE in C. macropomum

    Núcleos de Ensino da Unesp: artigos 2014: volume 2: metodologias de ensino e a apropriação de conhecimento pelos alunos

    No full text
    corecore