132 research outputs found

    Tight glycaemic control in the intensive care unit: pitfalls in the testing of the concept

    Get PDF
    Tight glycaemic control emerged on the scene of critical care in 2001. Surprisingly, not many confirmation trials have been published so far. The randomised controlled trial by De La Rosa and colleagues is a timely and valuable attempt to repeat the landmark Leuven studies. The failure to replicate the beneficial effects of tight glycaemic control may boil down to some less obvious defaults in the set-up of the trial despite a seemingly adequate study design. The incorporation of ample power calculations and strict adherence to glucose targets are essential to fairly compare studies on tight blood glucose control. Only if these basic conditions of study design are fulfilled can the effectiveness of the therapy be assessed

    Enteral nutrition: better navigation, yet unknown destination?

    Full text link

    Bench-to-bedside review: Metabolism and nutrition

    Get PDF
    Acute kidney injury (AKI) develops mostly in the context of critical illness and multiple organ failure, characterized by alterations in substrate use, insulin resistance, and hypercatabolism. Optimal nutritional support of intensive care unit patients remains a matter of debate, mainly because of a lack of adequately designed clinical trials. Most guidelines are based on expert opinion rather than on solid evidence and are not fundamentally different for critically ill patients with or without AKI. In patients with a functional gastrointestinal tract, enteral nutrition is preferred over parenteral nutrition. The optimal timing of parenteral nutrition in those patients who cannot be fed enterally remains controversial. All nutritional regimens should include tight glycemic control. The recommended energy intake is 20 to 30 kcal/kg per day with a protein intake of 1.2 to 1.5 g/kg per day. Higher protein intakes have been suggested in patients with AKI on continuous renal replacement therapy (CRRT). However, the inadequate design of the trials does not allow firm conclusions. Nutritional support during CRRT should take into account the extracorporeal losses of glucose, amino acids, and micronutrients. Immunonutrients are the subject of intensive investigation but have not been evaluated specifically in patients with AKI. We suggest a protocolized nutritional strategy delivering enteral nutrition whenever possible and providing at least the daily requirements of trace elements and vitamins

    Impact of Parenteral Nutrition Versus Fasting on Hepatic Bile Acid Production and Transport in a Rabbit Model of Prolonged Critical Illness

    Get PDF
    Cholestatic liver dysfunction frequently occurs during critical illness. Administration of parenteral nutrition (PN) is thought to aggravate this. Underlying mechanisms are not clear.status: publishe

    Feature engineering for ICU mortality prediction based on hourly to bi-hourly measurements

    Get PDF
    Mortality prediction for intensive care unit (ICU) patients is a challenging problem that requires extracting discriminative and informative features. This study presents a proof of concept for exploring features that can provide clinical insight. Through a feature engineering approach, it is attempted to improve ICU mortality prediction in field conditions with low frequently measured data (i.e., hourly to bi-hourly). Features are explored by investigating the vital signs measurements of ICU patients, labelled with mortality or survival at discharge. The vital signs of interest in this study are heart and respiration rate, oxygen saturation and blood pressure. The latter comprises systolic, diastolic and mean arterial pressure. In the feature exploration process, it is aimed to extract simple and interpretable features that can provide clinical insight. For this purpose, a classifier is required that maximises the margin between the two classes (i.e., survival and mortality) with minimum tolerance to misclassification errors. Moreover, it preferably has to provide a linear decision surface in the original feature space without mapping to an unlimited dimensionality feature space. Therefore, a linear hard margin support vector machine (SVM) classifier is suggested. The extracted features are grouped in three categories: statistical, dynamic and physiological. Each category plays an important role in enhancing classification error performance. After extracting several features within the three categories, a manual feature fine-tuning is applied to consider only the most efficient features. The final classification, considering mortality as the positive class, resulted in an accuracy of 91.56%, sensitivity of 90.59%, precision of 86.52% and F-1-score of 88.50%. The obtained results show that the proposed feature engineering approach and the extracted features are valid to be considered and further enhanced for the mortality prediction purpose. Moreover, the proposed feature engineering approach moved the modelling methodology from black-box modelling to grey-box modelling in combination with the powerful classifier of SVMs

    Prediction of functional outcome after acute ischemic stroke : comparison of the CT-DRAGON score and a reduced features set

    Get PDF
    Background and Purpose:The CT-DRAGON score was developed to predict long-term functional outcome after acute stroke in the anterior circulation treated by thrombolysis. Its implementation in clinical practice may be hampered by its plethora of variables. The current study was designed to develop and evaluate an alternative score, as a reduced set of features, derived from the original CT-DRAGON score. Methods:This single-center retrospective study included 564 patients treated for stroke, in the anterior and the posterior circulation. At 90 days, favorable [modified Rankin Scale score (mRS) of 0-2] and miserable outcome (mRS of 5-6) were predicted by the CT-DRAGON in 427 patients. Bootstrap forests selected the most relevant parameters of the CT-DRAGON, in order to develop a reduced set of features. Discrimination, calibration and misclassification of both models were tested. Results:The area under the receiver operating characteristic curve (AUROC) for the CT-DRAGON was 0.78 (95% CI 0.74-0.81) for favorable and 0.78 (95% CI 0.72-0.83) for miserable outcome. Misclassification was 29% for favorable and 13.5% for miserable outcome, with a 100% specificity for the latter. National Institutes of Health Stroke Scale (NIHSS), pre-stroke mRS and age were identified as the strongest contributors to favorable and miserable outcome and named the reduced features set. While CT-DRAGON was only available in 323 patients (57%), the reduced features set could be calculated in 515 patients (91%) (p < 0.001). Misclassification was 25.8% for favorable and 14.4% for miserable outcome, with a 97% specificity for miserable outcome. The reduced features set had better discriminative power than CT-DRAGON for both outcomes (both p < 0.005), with an AUROC of 0.82 (95% CI 0.79-0.86) and 0.83 (95% CI 0.77-0.87) for favorable and miserable outcome, respectively. Conclusions:The CT-DRAGON score revealed acceptable discrimination in our cohort of both anterior and posterior circulation strokes, receiving all treatment modalities. The reduced features set could be measured in a larger cohort and with better discrimination. However, the reduced features set needs further validation in a prospective, multicentre study

    Cost-effectiveness study of early versus late parenteral nutrition in critically ill children (PEPaNIC)

    Get PDF
    __Background:__ The multicentre randomised controlled PEPaNIC trial showed that withholding parenteral nutrition (PN) during the first week of critical illness in children was clinically superior to providing early PN. This study describes the cost-effectiveness of this new nutritional strategy. __Methods:__ Direct medical costs were calculated with use of a micro-costing approach. We compared the costs of late versus early initiation of PN (n = 673 versus n = 670 pa

    Population-wide persistent hemostatic changes after vaccination with ChAdOx1-S

    Get PDF
    Various vaccines were developed to reduce the spread of the Severe Acute Respiratory Syndrome Cov-2 (SARS-CoV-2) virus. Quickly after the start of vaccination, reports emerged that anti-SARS-CoV-2 vaccines, including ChAdOx1-S, could be associated with an increased risk of thrombosis. We investigated the hemostatic changes after ChAdOx1-S vaccination in 631 health care workers. Blood samples were collected 32 days on average after the second ChAdOx1-S vaccination, to evaluate hemostatic markers such as D-dimer, fibrinogen, α2-macroglobulin, FVIII and thrombin generation. Endothelial function was assessed by measuring Von Willebrand Factor (VWF) and active VWF. IL-6 and IL-10 were measured to study the activation of the immune system. Additionally, SARS-CoV-2 anti-nucleoside and anti-spike protein antibody titers were determined. Prothrombin and fibrinogen levels were significantly reduced after vaccination (−7.5% and −16.9%, p &lt; 0.0001). Significantly more vaccinated subjects were outside the normal range compared to controls for prothrombin (42.1% vs. 26.4%, p = 0.026) and antithrombin (23.9% vs. 3.6%, p = 0.0010). Thrombin generation indicated a more procoagulant profile, characterized by a significantly shortened lag time (−11.3%, p &lt; 0.0001) and time-to-peak (−13.0% and p &lt; 0.0001) and an increased peak height (32.6%, p = 0.0015) in vaccinated subjects compared to unvaccinated controls. Increased VWF (+39.5%, p &lt; 0.0001) and active VWF levels (+24.1 %, p &lt; 0.0001) pointed toward endothelial activation, and IL-10 levels were significantly increased (9.29 pg/mL vs. 2.43 pg/mL, p = 0.032). The persistent increase of IL-10 indicates that the immune system remains active after ChAdOx1-S vaccination. This could trigger a pathophysiological mechanism causing an increased thrombin generation profile and vascular endothelial activation, which could subsequently result in and increased risk of thrombotic events

    Noninvasive ventilation in COVID-19 patients aged ≥ 70 years—a prospective multicentre cohort study

    Get PDF
    Funding Information: COVIP study did not have any funding. Publication of this article was funded by the Priority Research Area qLife under the program “Excellence Initiative – Research University” at the Jagiellonian University in Krakow (06/IDUB/2019/94). Publisher Copyright: © 2022, The Author(s).Background: Noninvasive ventilation (NIV) is a promising alternative to invasive mechanical ventilation (IMV) with a particular importance amidst the shortage of intensive care unit (ICU) beds during the COVID-19 pandemic. We aimed to evaluate the use of NIV in Europe and factors associated with outcomes of patients treated with NIV. Methods: This is a substudy of COVIP study—an international prospective observational study enrolling patients aged ≥ 70 years with confirmed COVID-19 treated in ICU. We enrolled patients in 156 ICUs across 15 European countries between March 2020 and April 2021.The primary endpoint was 30-day mortality. Results: Cohort included 3074 patients, most of whom were male (2197/3074, 71.4%) at the mean age of 75.7 years (SD 4.6). NIV frequency was 25.7% and varied from 1.1 to 62.0% between participating countries. Primary NIV failure, defined as need for endotracheal intubation or death within 30 days since ICU admission, occurred in 470/629 (74.7%) of patients. Factors associated with increased NIV failure risk were higher Sequential Organ Failure Assessment (SOFA) score (OR 3.73, 95% CI 2.36–5.90) and Clinical Frailty Scale (CFS) on admission (OR 1.46, 95% CI 1.06–2.00). Patients initially treated with NIV (n = 630) lived for 1.36 fewer days (95% CI − 2.27 to − 0.46 days) compared to primary IMV group (n = 1876). Conclusions: Frequency of NIV use varies across European countries. Higher severity of illness and more severe frailty were associated with a risk of NIV failure among critically ill older adults with COVID-19. Primary IMV was associated with better outcomes than primary NIV. Clinical Trial RegistrationNCT04321265, registered 19 March 2020, https://clinicaltrials.gov.publishersversionpublishe

    Continuous glucose sensors for glycaemic control in the ICU: have we arrived?

    No full text
    corecore