16 research outputs found

    Smart e-trader: A prototype information management system for UAE stock markets

    Get PDF
    This paper presents a new online smart trading approach for investors in UAE stock markets. Smart trader is a web-based information management system that provides investors with real time stock market information and personalized stock recommendations. A study was conducted to assess the needs for such system in UAE markets and found a strong demand for it among investors. A new system architecture is also proposed, called smart e- trader, to accommodate investors\u27 new needs and preferences. A prototype system of smart trader has been implemented to evaluate the usefulness and effectiveness of the new approach. The findings of this research suggests that deploying a smart online stock trading applications in UAE markets would help investors make an informative investment decisions as well as assist them manage their stock trading transactions

    Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study

    Get PDF
    The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30–70 % for pre-adipocyte proliferation; this was 40–80 % for triglyceride accumulation induced by pyraclostrobin, 80–100 % for tributyltin, and 80–100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30–70 % active determinations for pyraclostrobin, 30–50 % for tributyltin, and 20–40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.Over-arching project supported by grants [R01 ES016099 to HMS; R00 ES030405 to CDK] from the National Institute of Environmental Health Sciences (NIEHS); University of Turin; European Union's Horizon 2020 research and innovation program under grant agreement GOLIATH No. 825489; Brunel University London; NIEHS (1K22ES026208 and R01ES027863); NIEHS (Z0ES102785); Spanish Institute of Health Carlos III (grant FIS-PI16/01812)

    Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells

    No full text
    Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies

    Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells

    Get PDF
    Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies
    corecore