1,996 research outputs found

    Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field

    Full text link
    In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a "particle" as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hbar.omega and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with previous work, expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works.Comment: 14 pages, based on a talk given at "Emergent Quantum Mechanics (Heinz von Foerster Conference 2011)", see http://www.univie.ac.at/hvf11/congress/EmerQuM.htm

    Non-additive and Additive Genetic Effects on Extraversion in 3314 Dutch Adolescent Twins and Their Parents.

    Get PDF
    The influence of non-additive genetic influences on personality traits has been increasingly reported in adult populations. Less is known, however, with respect to younger samples. In this study, we examine additive and non-additive genetic contributions to the personality trait of extraversion in 1,689 Dutch twin pairs, 1,505 mothers and 1,637 fathers of the twins. The twins were on average 15.5 years (range 12-18 years). To increase statistical power to detect non-additive genetic influences, data on extraversion were also collected in parents and simultaneously analyzed. Genetic modeling procedures incorporating age as a potential modifier of heritability showed significant influences of additive (20-23%) and non-additive genetic factors (31-33%) in addition to unshared environment (46-48%) for adolescents and for their parents. The additive genetic component was slightly and positively related to age. No significant sex differences were found for either extraversion means or for the magnitude of the genetic and environmental influences. There was no evidence of non-random mating for extraversion in the parental generation. Results show that in addition to additive genetic influences, extraversion in adolescents is influenced by non-additive genetic factors. © 2008 Springer Science+Business Media, LLC

    Carbon and oxygen in HII regions of the Magellanic Clouds: abundance discrepancy and chemical evolution

    Full text link
    We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cloud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 8 table

    The risk implications of the business loan activity in credit unions

    Get PDF
    US credit unions have been subject to a strict regulation of their commercial lending which included both requirements for enhanced organizational practices and a cap on the proportion of business loans relative to assets (imposed in 1998 by US Congress). Since 2003, however, these limitations have been steadily relaxed, a process which has resulted in an increase in credit union business lending activity. Using data from the universe of US credit unions we provide comprehensive evidence that expansion of the business loan portfolio increases the risk of the asset side of the credit union. This is the case even for credit unions which benefit from partnership with the SBA, for which we observe an initial increase in the risk of non-SBA backed loans (an overconfidence effect) which reverses over time (a learning effect). Our results suggest, furthermore, that the risk of business loans is exacerbated for credit unions which initiate their business loan activity and which do so rapidly. In the second part of our analysis we provide descriptive and quasi-experimental evidence that expansions of credit union activity into business loans are associated with lower subsequent growth rates of deposits. This result is similar to the reaction to risk indicators found in the banking literature and might give an ex-ante incentive for the CU that could work as a market-based stabilization mechanism complementary to that of explicit regulation

    Drivers of depositor discipline in credit unions

    Get PDF
    In this paper, we analyze whether credit unions are subject to market discipline by their (member) depositors and examine the drivers of such discipline. We first provide descriptive evidence of depositor discipline in credit unions: shares and deposits as well as savings interest rates react to variables that reflect the financial health of the credit union and its asset risk. We show that this discipline is long-lasting and that it is mediated by the existence of a deposit guarantee scheme and by the strength of the relationship of members with the credit union. We then use proxies of the capability of members to process financial information to show that discipline is heavily influenced by member financial sophistication. Our results suggest that a type of market-based discipline acts as a complement for regulation in controlling credit union risk taking, thus contributing to overall financial stability

    Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes

    Get PDF
    Some of the largest impacts of climate change are expected in the environmentally heterogeneous and species rich high mountain ecosystems. Among those, the Neotropical alpine grassland above the tree line (c. 2,800 m), known as Páramo, is the fastest evolving biodiversity hotspot on earth, and one of the most threatened. Yet, predicting climate responses of typically slow-growing, long-lived plant linages in this unique high mountain ecosystem remains challenging. Here we coupled climate sensitivity modeling and adaptive potential inferences to efficiently assess climate vulnerability of Espeletia, Páramo’s most iconic, predominant and rapidly evolving plant complex. In order to estimate climate sensitivity, we first modeled the distribution of 28 Espeletia taxa under a niche conservatism scenario using altitude and five current (1970–2000) and future (2050 RCP 8.5) bioclimatic variables across 36 different Páramo complexes in the northern Andes (49% of the world’s Páramo area). As an alternative to range shifts via migration, we also computed the adaptive capacity of these Páramo complexes by considering three enhancing factors of the biodiversity’s adaptive potential as well as three environmental limiting factors of the populations’ plastic response. These predictors showed that diverse Páramos in the Eastern Cordillera were more vulnerable likely because the counteracting effects of the adaptive potential (r = −0.93 ± 0.01) were not sufficient to buffer higher distribution losses (r = 0.39 ± 0.01). Agriculture (r = −0.48 ± 0.01), mining (r = −0.36 ± 0.01), and rural population density (r = −0.23 ± 0.01) also weakened the adaptive capacity. These results speak for a limited persistence via migration in the short-term responses of Espeletia to climate change, even though the past population dynamics in concert with glacial cycling is indicative of a predominant role of range shifts. Furthermore, changing climate, together with a general inability to adapt, may eventually constrain the rapid diversification in the Espeletia complex. Our integrative modeling illustrates how future climate may impact plant populations in a mega diverse and highly threatened ecosystem such as the Páramo, and encourages carrying out similar estimates in diverse plant complexes across other high mountain and island-like ecosystems

    Connection Between Type A and E Factorizations and Construction of Satellite Algebras

    Full text link
    Recently, we introduced a new class of symmetry algebras, called satellite algebras, which connect with one another wavefunctions belonging to different potentials of a given family, and corresponding to different energy eigenvalues. Here the role of the factorization method in the construction of such algebras is investigated. A general procedure for determining an so(2,2) or so(2,1) satellite algebra for all the Hamiltonians that admit a type E factorization is proposed. Such a procedure is based on the known relationship between type A and E factorizations, combined with an algebraization similar to that used in the construction of potential algebras. It is illustrated with the examples of the generalized Morse potential, the Rosen-Morse potential, the Kepler problem in a space of constant negative curvature, and, in each case, the conserved quantity is identified. It should be stressed that the method proposed is fairly general since the other factorization types may be considered as limiting cases of type A or E factorizations.Comment: 20 pages, LaTeX, no figure, to be published in J. Phys.
    • …
    corecore