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Some of the largest impacts of climate change are expected in the environmentally
heterogeneous and species rich high mountain ecosystems. Among those, the
Neotropical alpine grassland above the tree line (c. 2,800 m), known as Páramo, is
the fastest evolving biodiversity hotspot on earth, and one of the most threatened.
Yet, predicting climate responses of typically slow-growing, long-lived plant linages in
this unique high mountain ecosystem remains challenging. Here we coupled climate
sensitivity modeling and adaptive potential inferences to efficiently assess climate
vulnerability of Espeletia, Páramo’s most iconic, predominant and rapidly evolving plant
complex. In order to estimate climate sensitivity, we first modeled the distribution
of 28 Espeletia taxa under a niche conservatism scenario using altitude and five
current (1970–2000) and future (2050 RCP 8.5) bioclimatic variables across 36 different
Páramo complexes in the northern Andes (49% of the world’s Páramo area). As an
alternative to range shifts via migration, we also computed the adaptive capacity of
these Páramo complexes by considering three enhancing factors of the biodiversity’s
adaptive potential as well as three environmental limiting factors of the populations’
plastic response. These predictors showed that diverse Páramos in the Eastern
Cordillera were more vulnerable likely because the counteracting effects of the adaptive
potential (r = −0.93 ± 0.01) were not sufficient to buffer higher distribution losses
(r = 0.39 ± 0.01). Agriculture (r = −0.48 ± 0.01), mining (r = −0.36 ± 0.01), and rural
population density (r = −0.23 ± 0.01) also weakened the adaptive capacity. These
results speak for a limited persistence via migration in the short-term responses of
Espeletia to climate change, even though the past population dynamics in concert
with glacial cycling is indicative of a predominant role of range shifts. Furthermore,
changing climate, together with a general inability to adapt, may eventually constrain the
rapid diversification in the Espeletia complex. Our integrative modeling illustrates how
future climate may impact plant populations in a mega diverse and highly threatened
ecosystem such as the Páramo, and encourages carrying out similar estimates in
diverse plant complexes across other high mountain and island-like ecosystems.

Keywords: Neotropical alpine region, biodiversity hotspots, species distribution modeling, niche conservatism,
range shifts, adaptation, Espeletiinae Cuatrec. (Asteraceae)
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INTRODUCTION

How tropical alpine biodiversity hotspots are affected and will
react to climate change is among the most pressing questions
in current biological research. Most studies on responses
to changing climate assume populations migration to higher
altitudes so that organisms would track their ecological niche
(Lenoir et al., 2008; Steinbauer et al., 2018), and in some cases
even to lower altitudes due to competitive release (Lenoir et al.,
2010). Yet, when migration potential is restricted (Jump and
Penuelas, 2005; Lees et al., 2020), the only way left for organisms
to persist is by adjusting to the new environmental conditions, a
traditionally neglected alternative in niche modeling. Adjustment
via phenotypic plasticity is presumably important in long-lived
taxa because plastic responses can happen within the lifetime of
an individual (Nicotra et al., 2010). However, plasticity may be
hampered when populations face novel anthropic conditions not
found in their evolutionary history (Fox et al., 2019; Kelly, 2019),
e.g., agriculture, mining and population density. Organisms can
also adjust to climate change through adaptation (Waldvogel
et al., 2020). Still, populations may not have enough adaptive
potential (e.g. limited diversity) to keep up with the pace of
climate change (Hoffmann and Sgro, 2011). Therefore, assessing
biodiversity hotspots’ vulnerability to climate change not only
requires tracing ecological niche gaps under future scenarios –
i.e., sensitivity (Berry et al., 2003), but also needs to explicitly
account for the adaptive potential (Razgour et al., 2019) and
plasticity to anthropic pressures. These improvements may make
predictions more congruent with empirical data, even in potential
climate refugia (Sweet et al., 2019).

One of the fastest evolving biodiversity hotspots is the Páramo
(Madriñán et al., 2013), a highly threated (Vásquez et al., 2015;
Pérez-Escobar et al., 2018) alpine ecosystem dominated by
diverse grasslands above the treeline in the American tropics (at
elevations of ca. 2,800–5,000 m). It is a main water supplier of
wetland ecosystems and densely populated areas in the northern
Andes (Cuesta et al., 2019a; Llambí et al., 2020). Despite it has
a relatively small surface area (35,000 km2), it contains over
3,000 plant species, several of which are endemic (Luteyn, 1999;
Hughes and Atchison, 2015) and emerged as unique adaptations
to extreme environments that evolved during the Andean uplift
in the last five million years (Antonelli et al., 2009; Madriñán
et al., 2013; Mutke et al., 2014). Unparalleled diversification rates
across plant groups at these tropical “sky islands” (Sklenáø et al.,
2014) has further been attributed to colonization by pre-adapted
linages (Muellner-Riehl, 2019), and Pleistocene glacial cycling
(Nevado et al., 2018; Perrigo et al., 2019; Rahbek et al., 2019)
in the last 2.4 Myr that led to repeated periods of connectivity
and spatial isolation (i.e., “species pump hypothesis”). Population
fluctuations in concert with past glacial cycling indicate a general
inability to adapt and a major role of range shifts (Martín-Bravo
et al., 2010; Ronikier, 2011; Hazzi et al., 2018; Muellner-Riehl,
2019). Yet, it remains to be explored whether the rapidly evolving
Páramo can keep pace with the quick rate of climate change and
human expansion.

The most iconic, abundant and diverse group in the Páramo
is the Espeletia complex (Monasterio and Sarmiento, 1991;

Madriñán et al., 2013; Mavárez, 2019b). It originated in the
Venezuelan Andes (Pouchon et al., 2018) from where it
colonized southwards the Colombian Eastern Cordillera and the
Ecuadorian Andes (Mavárez, 2019b), followed by a northwards
migration into the Colombian Central and Western Cordilleras
(Cuatrecasas, 2013). Espeletia taxa (ca. 120) are ecologically
abundant across the Páramo landscape (Luteyn, 1999), occurring
in highly heterogeneous habitats. Espeletia populations are
adapted to grow in the wet depressions of high valleys, in the
dry exposed slopes or even within the forests at the tree line,
therefore experiencing a wide range of climatic conditions within
elevations and localities (Peyre et al., 2018). This environmental
heterogeneity may have important implications for the reaction
of Espeletia to changing climatic conditions. For example, habitat
variation may provide suitable locations for migrants within
only a few meters of their current locations (Scherrer and
Körner, 2011). However, populations adapted to a narrow range
of conditions may respond poorly to future threats. In other
words, environmental heterogeneity effects on the responses
to climate change may be mixed, and sometime contradictory,
especially for a long living tropical alpine plant with limited seed
dispersal, such as Espeletia. Hence, a much-needed research is
to balance climate sensitivity under the current ecological niche
heterogeneity with the adaptive capacity of Espeletia to assess the
climate vulnerability of this plant complex.

In order to bridge this gap, our goals in this study
were to (1) quantify climate sensitivity in the Espeletia
complex by comparing current and future (2050 RCP 8.5)
distributions under a niche conservatism scenario (i.e., range
shift via migration), (2) compute the adaptive capacity by
incorporating enhancing factors of the biodiversity’s adaptive
potential (i.e., diversity, protected areas, and forest area in
the buffer zone of the Páramo) as well as limiting factors
of the plastic response (i.e., agricultural area, mining, and
population density), and (3) estimate climate vulnerability of
Espeletia by simultaneously coupling its climate sensitivity
with its adaptive capacity. This work will help establishing
how plant populations may respond to environmental change
in a mega diverse tropical alpine region, where the largest
impacts of climate pressures are expected (Körner, 2003;
Rumpf et al., 2018).

MATERIALS AND METHODS

Study Area
The study area comprised the Colombian Andean Páramo
biogeographical province (2,732–5,212 m, Figure 1), including
the high-elevation northern Andes and the Sierra Nevada de
Santa Marta, but excluding areas with similar altitudes in
the Cordillera de Merida and Central American mountains
(Figure 2). It was delimited in the north by the Sierra Nevada
of Santa Marta (11◦N), and in the south by the Colombia-
Ecuador border (1 N). It spanned 36 Páramo complexes, as in
Morales et al. (2007) and Londoño et al. (2014), denoting 49% of
the world’s Páramos. The surveyed Páramo zones were covered
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FIGURE 1 | Altitudinal profile (m asl) of 28 Espeletia taxa across Páramo sky islands in the Colombian Andes. A total of 1,432 occurrences, originally gathered as
georeferenced specimen data from GBIF, were retained after cleaning for georeferencing consistency (i.e., non-redundant records located within the study area) and
number of records per species (to avoid distributions with less than 10 points, following Van Proosdij et al. (2016) for narrow-ranged species). Espeletia taxonomy is
in accordance with Cuatrecasas (2013).

in a 33% by protected areas1, and surrounded in a 30% by
forest patches2. Meanwhile, agriculture and mining, respectively,
disturbed 6 and 7%3 of these Páramos and their buffer belt
(2 km around the tree line). The handling of these data sources
is detailed below as part of the computation of the “Adaptive
Capacity at the Study Area.”

Climate Sensitivity in the Espeletia
Complex
Climate sensitivity in the Espeletia complex was modeled by
comparing current and future (2050 RCP 8.5) distributions under
a niche conservatism scenario (i.e., range shift via migration).
Occurrences of Espeletia samples for the 36 Colombian Páramo
complexes were downloaded as georeferenced specimen data
from providers served by GBIF4. From an initial set of 15,466
specimen records downloaded, a total of 1,432 (Supplementary

1http://www.parquesnacionales.gov.co
2http://www.siac.gov.co
3https://www.igac.gov.co
4https://www.gbif.org

Table S1), comprising 28 different Espeletia taxa according to
Cuatrecasas (2013) – Supplementary Table S2, were retained
after filtering for georeferencing consistency (i.e., non-redundant
records within the study area) and number of records. In order to
avoid bias due to distributions with low number of input points
(Wisz et al., 2008), specially for presumably rare taxa (Fois et al.,
2018), only putative species with at least 10 original records were
retained (three taxa with more than 100 records, Supplementary
Figure S1A). This threshold follows Van Proosdij et al. (2016)
recommendation for narrow-ranged species, that is those with
a moderate prevalence class (i.e., 27 taxa were present in less
than seven different Páramo complexes, and only one taxon
was present in 20 Páramos, Supplementary Figure S1B). This
latter trend is expected in Espeletia species, for which distance
(Diazgranados and Barber, 2017; Padilla-González et al., 2017)
and ecology (Cortés et al., 2018a) are the major speciation drivers.

Historical climate data was extracted from the WorldClim5

database, at a 30 s resolution, using the georeferencing of each
record. All 19 bioclimatic variables were downloaded in the

5http://www.worldclim.org
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baseline period 1970–2000. The same variables projected to 2050,
under the IPCC RCP 8.5 scenario, were gathered using CCAFS’s
downscaled delta method (Navarro-Racines et al., 2020). This
projection averages 33 different global climatic models at a
1 km2 resolution. A Digital Elevation Model (DEM) variable
was further included. Prioritization of environmental variables
(Zeng et al., 2016) is crucial to enhance model complexity
(Warren and Seifert, 2011) for climate sensitivity assessments.
By improving variable selection (Cobos et al., 2019), collinearity
(Feng et al., 2019) and sampling bias (Syfert et al., 2013)
can be minimized. Collinearity in particular refers to a strong
correlation between two or more predictor variables, and may
cause instability in parameter estimation (Dormann et al., 2013).
A measure to diagnose collinearity is the Variance Inflation
Factor (VIF), the square of the multiple correlation coefficient
resulting from regressing a predictor variable against all other
predictor variables (Chatterjee and Hadi, 2006). Hence, we
performed variable selection by computing the VIF score using
the usdm (Uncertainty Analysis for Species Distribution Models)
package (Naimi et al., 2014) in R v.3.3.1 (R Core Team), and
drew Pairwise Pearson correlations (r) among all variables by
means of the same software (Supplementary Figure S2). Five
bioclimatic variables and DEM did not exhibit collinearity (Naimi
et al., 2014) at VIF < 10 (Supplementary Table S3), with
absolute r-values below 0.7 from 0.05 to 0.65, and therefore were
retained hereinafter.

The six non-collinear variables fed Maxent model v.3.4.1.
(Phillips et al., 2017), a “machine learning” outline that uses
maximum entropy and Bayesian inference to estimate occurrence
probability distributions. Ten split-sample models were run,
after checking for stabilization in the ROC curves (Spiers
et al., 2018), with an average of 10 k pseudo-absences for
each of the 28 putative taxa. Each replicated run type was set
to “cross-validate” with 500 iterations (Buffum et al., 2015).
Presence ≥ 95% was binary reclassified (Liu et al., 2005) and
the average across repetitions was recorded in each case. This
procedure was performed for the historical dataset (1970–
2000). To predict distribution changes of Espeletia, we projected
trained models on current presence localities and present
background climate to 2050 under the RCP 8.5 scenario through
Maxent’s “projection layer” tool. Current model validation
considered AUC, an aggregate measure of performance across
all possible classification thresholds. Minimum average testing
AUC was above 0.98 (Supplementary Table S4). As AUC alone
(Supplementary Table S5) may be deceiving (Lobo et al., 2008;
West et al., 2016), the AIC and BIC criteria were also computed
and checked for consistency (Supplementary Table S6).

All 56 distribution maps were converted to binary data, using
a threshold of the 20th percentile, as suggested by the Maxent
v.3.4.1 software (Phillips et al., 2017). These maps were then
averaged to generate spatial information of current and future
presence probabilities across all 28 taxa. Finally, the current
distribution map was subtracted to the one obtained under a
climate change scenario in order to estimate climate sensitivity in
the Espeletia complex. Values close to zero in the sensitivity index
meant few changes in the forecasted distribution of Espeletia due
to climatic variation. On the other hand, negative and positive

values corresponded to areas where the presence probabilities
were, respectively, diminished or boosted by climate change.

Adaptive Capacity at the Study Area
We computed the adaptive capacity as the scaled additive effects
of six main variables that expressed the capacity of the overall
Espeletia biodiversity to respond without migration to the effects
of climate change. Enhancing factors of the biodiversity’s adaptive
potential were diversity, protected areas, and forest area around
the Páramo. On the contrary, limiting factors of the plastic
response were agriculture, mining, and population density.

Diversity may buffer the effects of climate change by
enriching complex interactions, such as adaptive inter-specific
introgression (Marques et al., 2019) and hybrid speciation
(Coyne and Orr, 2004; Abbott et al., 2013; Payseur and
Rieseberg, 2016). Hybridization may allow for local adaptation in
transitional environments and bi-directional transfer of adaptive
variation through introgression (Isabel et al., 2020). Espeletia
in particular exhibits weak species boundaries, rampant gene-
flow and reticulate evolution (Cortés et al., 2018a; Pouchon
et al., 2018), leading to a high incidence of natural hybrids
(Rauscher, 2002; Cuatrecasas, 2013). In order to account for the
enhancing role of diversity on the adaptive potential, the number
of Espeletia taxa was totalized in a 1 km grid using the occurrence
data downloaded from GBIF (see footnote), as described in the
previous section, and scaled from 0 to 1.

Another enhancing factor of the biodiversity’s adaptive
potential is protected areas, where human intervention does not
represent a direct threat, allowing biodiversity to be conserved
while naturally coping with climate change. Protected areas
selected for this analysis spanned 1,050 natural areas, according
to the System of National Natural Parks (see footnote), and
included 43 National Natural Parks, 663 Civil Society Reserves,
54 Regional Natural Parks, and 57 National Protected Forest
Reserves. These categories were, respectively, rated as 1, 0.3, 0.1,
and 0.1, following CIAT (2017). Higher ratings were assigned to
areas that presumably provide greater protection for biodiversity
due to their low anthropogenic pressure and extent.

Forest patches around the Páramo complexes (Henao-Díaz,
2019) may also contribute buffering climate change effects by
facilitating (Bueno and Llambí, 2015) migration and gene-
flow, which could increase the frequency of existing genetic
variants adapted to particular conditions (Bridle and Vines,
2007). Additionally, forests provide conditions that may favor
thermal and water regulation, decreasing the magnitude of
climate change itself. Therefore, forest area in the buffer zone
of the Páramo (2 km around the tree line) was gathered from
the IDEAM (see footnote), and converted to binary points
(1 = presence) in a 1 km grid.

On the other hand, major limiting factors of the plastic
response are agriculture (Avellaneda-Torres et al., 2020), mining
(Pérez-Escobar et al., 2018) and population density within the
study area and in its buffer zone (Vásquez et al., 2015). In order
to account for these threats, agricultural and mining areas were
downloaded from the Geographic Institute Agustín Codazzi (see
footnote) for the period 2010–2012, and transformed to binary
data (0 = presence) in a 1 km grid within the study area and in its
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buffer zone (2 km around the tree line). The population density
indicator was computed as the inverse value of the normalized
rural population density, scaled from 0 to 1, so that 1 meant
absence of human settlements and 0 was the population density at
the most populated rural zones in the study area. The population
information was gathered from data projected to 2015 by the
National Administrative Department of Statistics6.

Climate Vulnerability Index for Espeletia
In order to estimate climate vulnerability at the overall Espeletia
complex, we simultaneously coupled its climate sensitivity with
its adaptive capacity. Negative values of the sensitivity index
meant areas where the presence probabilities of Espeletia were
diminished due to climate change. Meanwhile, lower adaptive
capacity scores spoke for a prominent role of limiting factors
of the plastic response (i.e., agriculture, mining, and population
density) as compared to enhancing drivers of the biodiversity’s

6https://www.dane.gov.co

adaptive potential (i.e., diversity, protected areas, and forest
area around the Páramo). Therefore, the climate vulnerability
score was computed as the complement value of the additive
contributions of the sensitivity and the adaptive capacity indices.
The climate vulnerability score was scaled from 0 to 1 for
comparative purposes. Pairwise Pearson correlations (r) among
all estimated scores were computed, and boxplots and ridgeline
plots were drawn for the three indices in all 36 Páramo
complexes. Computing and plotting were done in R v.3.3.1
(R Core Team).

RESULTS

Climate Sensitivity of Espeletia Varied
Widely Across Páramo Complexes
Climate sensitivity was estimated across all 36 Colombian
Páramo complexes by comparing current (baseline period 1970–
2000, Figure 2A) and future (2050 RCP 8.5, Figure 2B) average

FIGURE 2 | Climate sensitivity estimates of Espeletia across 36 Páramo complexes in the Colombian Andes. Climate sensitivity was modeled by comparing (A)
current (baseline period 1970–2000) and (B) future (2050 RCP 8.5) average distribution probabilities across 28 taxa, as obtained with Maxent v.3.4.1 (Phillips et al.,
2017) under a niche conservatism scenario (i.e., range shift via migration). Values close to zero in the sensitivity index (C) indicate few changes in the forecasted
distribution of Espeletia due to climate change, while negative and positive values correspond to range losses and gains, respectively, based on the averaged
presence probabilities. Five non-collinear WorldClim bioclimatic variables (Supplementary Table S3) were considered at a 30 s (1 km2) spatial resolution for the
current and future scenarios, besides a Digital Elevation Model (DEM). Espeletia taxonomy follows Cuatrecasas (2013). Páramo complexes are numbered in (A)
according to Morales et al. (2007) and Londoño et al. (2014), specifically: (1) Perijá, (2) Jurisdicciones-Santurbán, (3) Tamá, (4) Almorzadero, (5) Yariguíes, (6) Cocuy,
(7) Pisba, (8) Tota-Bijagual-Mamapacha, (9) Guantiva-Rusia, (10) Iguaque-Merchán, (11) Guerrero, (12) Rabanal y río Bogotá, (13) Chingaza, (14) Cruz
Verde-Sumapaz, (15) Los Picachos, (16) Miraflores, (17) Belmira, (18) Nevados, (19) Chilí-Barragán, (20) Las Hermosas, (21) Nevado del Huila-Moras, (22)
Guanacas-Puracé-Coconuco, (23) Sotará, (24) Doña Juana-Chimayoy, (25) La Cocha-Patascoy, (26) Chiles-Cumbal, (27) Paramillo, (28) Frontino-Urrao, (29) Citará,
(30) Tatamá, (31) Duende, (32) Farallones de Cali, (33) Cerro Plateado, (34) Santa Marta, (35) Sonsón, and (36) Altiplano Cundiboyacense.
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distribution probabilities of 28 different Espeletia taxa (nine had
average sensitivity scores below zero). Values surrounding zero
in the sensitivity index (−0.029 to 0.030, 42% of the study area,
Figure 2C) stood for few changes in the forecasted distribution
of Espeletia due to climate change, and were predominant in
the north of the Eastern Cordillera, the Cruz Verde-Sumapaz
Páramo complex south of the Bogotá montane savanna (the
southwestern wetland complex of the larger Eastern Cordillera’s
Andean highland plateau), and the small sky islands of the
Western Cordillera.

Given a niche conservatism scenario, negative estimates
of the climate sensitivity (≤−0.030, 32% of the study area,

Figure 2C) predicted range losses based on the averaged presence
probabilities. Páramo areas more likely to experience range
losses were those in the Sierra Nevada de Santa Marta, and
the Central Cordillera South of Las Hermosas (i.e., Nevado
del Huila-Moras, and Guanacas-Puracé-Coconuco), as well as
those in the northern corner of the Eastern Cordillera (i.e.,
Sierra Nevada del Cocuy, Pisba, and Tota-Bijagual-Mamapacha),
where diverse summits surrounded the topographically intricate
Chichamocha inter-Andean canyon. On the other hand, range
shifts via migration enriched presence probabilities in other
localities (positive estimates of the climate sensitivity ≥ 0.031,
27% of the study area, Figure 2C). Range gains were only

FIGURE 3 | Components of the adaptive capacity across 36 Páramo complexes in the Colombian Andes. Enhancing (A–C) and limiting (D–F) factors of the
adaptive capacity are shown in green and red, respectively. Enhancing factors of the biodiversity’s adaptive potential were (A) diversity, (B) protected areas, and (C)
forest area around the Páramo, while limiting factors of the plastic response were (D) agriculture, (E) mining and (F) population density. Diversity (A), which is the
number of Espeletia taxa totalized in a 1 km grid based on the occurrence data downloaded from GBIF, and the inverse value of the normalized rural population
density (F) were scaled from 0 to 1. A total of 1,050 protected areas (B) were rated as 1, 0.3, 0.1, and 0.1 for National Natural Parks, Civil Society Reserves,
Regional Natural Parks and National Protected Forest Reserves, respectively, following (CIAT, 2017). Forest patches (C) around the Páramo complexes (2 km around
the tree line, 1 km grid) were recorded as presence points (1 = presence), while agriculture (D) and mining (E) for the period 2010–2012 were marked as null data
points (0 = presence) within the study area and in its buffer zone (2 km around the tree line, 1 km grid). Páramo complexes numbers in (A) follow Morales et al.
(2007) and Londoño et al. (2014): (1) Perijá, (2) Jurisdicciones-Santurbán, (3) Tamá, (4) Almorzadero, (5) Yariguíes, (6) Cocuy, (7) Pisba, (8) Tota-Bijagual-Mamapacha,
(9) Guantiva-Rusia, (10) Iguaque-Merchán, (11) Guerrero, (12) Rabanal y río Bogotá, (13) Chingaza, (14) Cruz Verde-Sumapaz, (15) Los Picachos, (16) Miraflores, (17)
Belmira, (18) Nevados, (19) Chilí-Barragán, (20) Las Hermosas, (21) Nevado del Huila-Moras, (22) Guanacas-Puracé-Coconuco, (23) Sotará, (24) Doña
Juana-Chimayoy, (25) La Cocha-Patascoy, (26) Chiles-Cumbal, (27) Paramillo, (28) Frontino-Urrao, (29) Citará, (30) Tatamá, (31) Duende, (32) Farallones de Cali, (33)
Cerro Plateado, (34) Santa Marta, (35) Sonsón, and (36) Altiplano Cundiboyacense.
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predicted for Páramo areas in the Central Cordillera (Los
Nevados, Chilí-Barragán, Las Hermosas, and La Cocha-Patascoy,
Supplementary Figure S3) where the dominant taxon was
E. hartwegiana, as well as in the summits of the northern tip of
the Eastern Cordillera (Perijá).

Adaptive Capacity Was Jeopardized
Across Most Páramo Complexes
The adaptive capacity across 36 Colombian Páramo complexes
was computed using a scaled additive model of enhancing
(Figures 3A–C) and limiting (Figures 3D–F) factors of the
biodiversity’s adaptive potential and the plastic response. The
adaptive capacity index (Figures 4B, 5A, Supplementary
Figure S3A, and Supplementary Table S7) was higher (≥0.72,
34% of the study area) in species-rich Páramo areas (Pearson’s
r = 0.19 ± 0.01, Figure 3A and Supplementary Figure S4),
and matched extensive National Natural Parks (r = 0.59 ± 0.01,
Figure 3B and Supplementary Figure S4), like the Eastern
Cordillera’s Sierra Nevada del Cocuy, Chingaza and Sumapaz.
The Páramo adaptive capacity index was also moderately superior
(0.62–0.71, 29% of the study area, Figure 4B) in the most

representative National Natural Parks in the Central Cordillera
(Los Nevados and Nevado del Huila) as well as in the Sierra
Nevada de Santa Marta. In turn, the western slopes of the Páramo
complexes at the Eastern and Central Cordilleras exhibited lower
adaptive capacity values (≤0.61, 37% of the study area), and
were enclosed by less forest patches (30% on average, Figure 3C,
r = 0.39± 0.01, Supplementary Figure S4).

However, positive effects due to protected areas and forest
coverage on the adaptive potential were offset by limiting
factors of the plastic response, primarily agricultural (6% of the
study area and its buffer zone, Figure 3D, r = −0.47 ± 0.01,
Supplementary Figure S4) and mining (7% of the study area
and its buffer zone, Figure 3E, r =−0.41± 0.01, Supplementary
Figure S4) pressures, mainly in the western slopes of the Páramo
areas at the Eastern and Central Cordilleras. This let to the
lowest adaptive potential estimates (≤0.52, 20% of the study
area, Figure 4B) at the western slopes of the Páramo complexes
in the Cauca province, in the Central Cordillera, and the
Boyacá and Santander provinces (i.e., Almorzadero and Altiplano
Cundiboyacense Páramo complexes), in the Eastern Cordillera.
Rural population (Figure 3F) hampered the adaptive potential

FIGURE 4 | Climate sensitivity, adaptive capacity and climate vulnerability in the Espeletia complex across 36 Páramo sky island complexes in the Colombian Andes.
Climate sensitivity (A) is already depicted in Figure 2C and is brought here for comparative purposes. Adaptive capacity (B) was computed as the scaled additive
effects of all six variables shown in Figure 3. Climate vulnerability (C) was calculated as the complement value of the additive contributions of the sensitivity and the
adaptive capacity indices, scaled from 0 to 1. Negative values in the sensitivity index (A) suggest range losses in the presence probabilities of Espeletia due to
climate change. Low values in the adaptive capacity score (B) indicate a major role of limiting factors of the plastic response (i.e., agriculture, mining, and population
density, Figures 3D–F) as compared to enhancing drivers of the biodiversity’s adaptive potential (i.e., diversity, protected areas, and forest area around the Páramo,
Figures 3A–C). Páramo complexes are numbered in (A) following Morales et al. (2007) and Londoño et al. (2014), that is: (1) Perijá, (2) Jurisdicciones-Santurbán, (3)
Tamá, (4) Almorzadero, (5) Yariguíes, (6) Cocuy, (7) Pisba, (8) Tota-Bijagual-Mamapacha, (9) Guantiva-Rusia, (10) Iguaque-Merchán, (11) Guerrero, (12) Rabanal y río
Bogotá, (13) Chingaza, (14) Cruz Verde-Sumapaz, (15) Los Picachos, (16) Miraflores, (17) Belmira, (18) Nevados, (19) Chilí-Barragán, (20) Las Hermosas, (21) Nevado
del Huila-Moras, (22) Guanacas-Puracé-Coconuco, (23) Sotará, (24) Doña Juana-Chimayoy, (25) La Cocha-Patascoy, (26) Chiles-Cumbal, (27) Paramillo, (28)
Frontino-Urrao, (29) Citará, (30) Tatamá, (31) Duende, (32) Farallones de Cali, (33) Cerro Plateado, (34) Santa Marta, (35) Sonsón, and (36) Altiplano Cundiboyacense.

Frontiers in Ecology and Evolution | www.frontiersin.org 7 September 2020 | Volume 8 | Article 565708

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-565708
Septem

ber22,2020
Tim

e:19:46
#

8

Valencia
etal.

Vulnerability
ofEspeletia

to
C

lim
ate

C
hange

FIGURE 5 | Boxplots for the adaptive capacity (A), climate sensitivity (B), and vulnerability (C) across 36 Páramo complexes in the Colombian Andes. For comparative purposes, Páramo complexes are sorted in
(A) from those with a low adaptive potential to anthropic pressures according to the enhancing and limiting factors depicted in Figure 3, in (B) from those likely to experience a range loss (distributions below zero)
to those predicted to exhibit a range gain (distributions above zero) by 2050 (under RCP 8.5), while in (C) Páramo complexes at the top are the most vulnerable. Boxplots summarize grid estimates depicted in
Figure 4.

Frontiers
in

E
cology

and
E

volution
|w

w
w

.frontiersin.org
8

S
eptem

ber
2020

|Volum
e

8
|A

rticle
565708

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-565708 September 22, 2020 Time: 19:46 # 9

Valencia et al. Vulnerability of Espeletia to Climate Change

in all three Cordilleras and Páramo areas (r = −0.28 ± 0.01,
Supplementary Figure S4).

Diverse Páramos in the Eastern
Cordillera Were More Vulnerable
The scaled complement of the additive contributions of the
sensitivity (Figures 2C, 5B and Supplementary Figure S3B)
and the adaptive capacity (Figure 4B) indices were used to
compute the climate vulnerability score (Figures 4C, 5C and
Supplementary Figure S3C). The most vulnerable (≥0.57, 11%
of the study area, Figure 4C) Páramo areas coincided with diverse
Páramos in the Eastern Cordillera (Figure 3A) because of more
distribution losses (r = 0.39 ± 0.01, Supplementary Figure S4).
Agriculture (r = 0.48± 0.01, Supplementary Figure S4), mining
(r = 0.36± 0.01, Supplementary Figure S4) and rural population
density (r = 0.23± 0.01, Supplementary Figure S4) also boosted
their vulnerability, mainly on the western slopes in the middle
of the Central Cordillera (i.e., Guanacas-Puracé-Coconuco), and
the northeast corner of the Eastern Cordillera (i.e., Almorzadero,
Pisba, and Altiplano Cundiboyacense). On the other hand, the
less vulnerable (≤0.38, 57% of the study area, Figure 4C) Páramo
areas were those with the highest adaptive capacity (≥ 0.72,
Figure 4B, r = −0.93 ± 0.01, Supplementary Figure S4) due to
large National Natural Parks (Sumapaz, Chingaza, Sierra Nevada
del Cocuy, Figure 3B), as well as those for which predicted range
shifts were neutral (−0.029 to 0.030, Figure 4A, i.e., the Cruz
Verde-Sumapaz Páramo complexes in the Eastern Cordillera) or
positive (≥0.031, Figure 5B, Los Nevados, Chilí-Barragán, and
Las Hermosas in Central Cordillera).

DISCUSSION

The climate sensitivity score of Espeletia to climate change
indicated range losses (negative values) widespread across most
Páramo complexes. This suggests limited persistence of the
Espeletia spp. populations via migration in the majority of
Páramos, with some exceptions in the Central Cordillera possibly
due to its higher connectivity. An alternative for populations to
persist despite changing environments would be adaptation s.l.
However, positive effects on the adaptive potential, like those due
to protected areas and forests, are likely to be offset by limiting
factors of the plastic response, such as rising agriculture and
mining in the Páramo areas and their surroundings. Overall,
this suggests that diverse Páramo areas of the Eastern Cordillera
are the most vulnerable to changing climate. Climate change
pushing Espeletia toward mountain summits where there is
nowhere else to go (Cuesta et al., 2019a), together with a general
inability of those populations to adapt, might constrain the rapid
diversification that has made the Espeletia complex so unique.

Range Losses in the Espeletia Complex
Will Widespread Throughout Most
Páramos
Widespread range losses in the distribution of Espeletia are
expected by 2050, a pessimistic prediction in line with previous
modeling efforts (Buytaert et al., 2011; Crandall et al., 2013;

Mavárez et al., 2018; Helmer et al., 2019; Peyre et al., 2020;
Young and Duchicela, 2020). This tendency is broadly defined
as thermophilization, a progressive decline of cold mountain
habitats and their biota (Gottfried et al., 2012). Large reductions
in modeled area and important upward shifts in the distribution
of 28 Espeletiinae are already predicted by 2070 at the Venezuelan
Páramo (Mavárez et al., 2018). Despite our projection is carried
out for a shorter time frame at another, wider, study area
(Colombian Andes spanning the Eastern, Central and Western
Cordilleras besides Sierra Nevada de Santa Marta), overall results
point toward the same trend and are complementary. Similar
predictions of climate sensitivity at the Páramo complexes of the
Ecuadorian Cordilleras (1 sp.) were not considered as part of
this study because of the difficulties in compiling and comparing
data from different national repositories, specifically for some
of the variables that compose the adaptive capacity score (i.e.,
agriculture and mining pressures). Yet, considering analogous
approaches in the Ecuadorian Páramo (Crandall et al., 2013;
Helmer et al., 2019; Peyre et al., 2020) is essential to gather a more
comprehensive understating on the consequences of climate
change at high Andean ecosystems north of the Huancabamba
depression, a major biogeographical barrier for high-elevation
plant taxa (Weigend, 2002).

There are two important exceptions for the widespread range
losses in the distribution of Espeletia in the Colombian Andes.
First, small and fragmented Páramo sky islands in the Western
Cordillera exhibit neutral climate sensitivity, a counterintuitive
projection that Mavárez et al. (2018) also pointed out for
Espeletiinae in isolated Páramo areas at Cordillera de Mérida.
This reiterative finding suggests that scarce topographical
complexity (terrain ruggedness) in recently colonized small
islands (Flantua et al., 2019) may have favored habitat generalists,
while intricate local-scale environmental heterogeneity at larger
Páramo complexes could have triggered an explosive radiation
(Cortés et al., 2018a; Naciri and Linder, 2020) of habitat
specialists, each with a narrow ecological niche for migration to
occur (Cuesta et al., 2019b). Modern colonization and limited
topographical complexity, together with higher connectivity, may
also account for the second exception, which is that range gains
are only predicted for Páramo areas in the Central Cordillera
(Los Nevados, Chilí-Barragán, Las Hermosas, and La Cocha-
Patascoy), where the dominant taxon is E. hartwegiana. In line
with this, Páramo areas more likely to exhibit range losses
are those in the topographically complex Eastern Cordillera’s
northeast corner, where diverse (Luteyn, 1999; Cuatrecasas, 2013;
Peyre et al., 2015, 2019) summits surround the deep (1,100 m)
Chichamocha inter-Andean canyon.

Range shifts presuppose niche conservatism, but also depend
on the intrinsic dispersal ability of the taxa (Pelayo et al., 2019;
Tovar et al., 2020). In organisms with limited seed dispersal
such as Espeletia, other ways for migration are key (Cochrane
et al., 2019). For instance, migration via sporadic pollen flow
would not be as constrained as seed dispersal (Cuatrecasas,
2013). Alternately, hybrids with intermediate niche requirements
(Rieseberg, 2003) may serve as bridges for migration in a
plant complex with rampant natural introgression (Rauscher,
2002; Cortés et al., 2018a; Pouchon et al., 2018). Finally,
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sporadic episodes of habitat connectivity (Flantua et al., 2019)
in the lifespan of a long-lived organism such as Espeletia
(Cuatrecasas, 2013) could provide a window for migration across
modern barriers.

Key traits may relax the niche conservatism assumption by
conferring the ability to colonize new habitats. For instance,
underground plant-soil interactions (Goh et al., 2013; Sedlacek
et al., 2014; Little et al., 2016) across different water levels (Geange
et al., 2017) and cellular-anatomical physiological adaptations
(Sandoval et al., 2019) may serve as pre-adaptations for a wider
range expansion (Cuesta et al., 2017). Plastic traits may also broad
the spectrum of novel climates (Arnold et al., 2019). Coupling
this modeling with eco-physiological studies in Espeletia (Leon-
Garcia and Lasso, 2019; Llambí and Rada, 2019) is hence a key
research line to better track future range shifts in the Páramo.

Climate Change May Constrain the Rapid
Diversification of the Espeletia Complex
The fact that diverse areas in the Eastern Cordillera are vulnerable
to climate change is not only counterintuitive, but it also means
that the long-term rapid diversification rate, striking in the
Espeletia complex, could be jeopardized. Diversity is regarded as
a buffer of the effects of climate change by enriching interactions
(Cáceres et al., 2014), such as facilitation (Bueno and Llambí,
2015; Wheeler et al., 2015; Llambí et al., 2018; Mora et al.,
2018; Venn et al., 2019), adaptive inter-specific introgression
(Schilthuizen et al., 2004; Seehausen, 2004) and hybrid speciation
(Payseur and Rieseberg, 2016), of which there is abundant
evidence in Espeletia (Rauscher, 2002; Cuatrecasas, 2013; Cortés
et al., 2018a; Pouchon et al., 2018). Yet, these positive effects
are offset by distribution losses in sensitive Páramo localities,
besides rising mining, agriculture and population density. These
are Páramo’s current major anthropogenic threats (Vásquez et al.,
2015; Pérez-Escobar et al., 2018) primarily in the western slopes
of the Eastern and Central Cordilleras.

Permeable species barriers due to pervasive hybridization
make the species concept highly debatable within the Espeletia
complex. Therefore we refrained from emphasizing single-
species responses that are likely to be overwhelmed by
meta-population dynamics. Pouchon et al. (2018) suggested
that the entire subtribe Espeletiinae requires an in deep
taxonomic revision (Mavárez, 2019b) because most of
Cuatrecasas’ (2013) species are thought to be paraphyletic.
This trend is not unexpected since the available taxonomy greatly
relies on potentially plastic morphological and reproductive
traits (Mavárez, 2020) that are susceptible to be driven by
environmental effects, besides the fact that it disregards rampant
hybridization (Rauscher, 2002). Then, a more appropriate
scenario for the young rapidly-evolving Espeletia complex
with weak species boundaries would be that ecotypes in the
same locality, despite depicting microhabitat divergence, are
capable of sharing through gene flow and introgression adaptive
genetic variants (Cortés et al., 2018a). Gene swapping because
of porosities in the species bounds would imply that (1) the
effective size of “rare” taxa with few records is higher in terms of
standing adaptive variation, and (2) concerted climate responses
is feasible across lineages within the same Páramo sky island.

Inter-mountain exchange is also plausible, as reported in other
tropical sky islands (Chala et al., 2020; Tusiime et al., 2020).

A possible way forward for populations to persist is the very
same driver that is thought to contribute with the unbeatable
diversification rate in the Páramo flora (Madriñán et al.,
2013) – local-scale adaptive variation (Huang et al., 2020;
Todesco et al., 2020). As part of this study we considered
major enhancers and constrainers of the adaptive potential at a
regional scale. However, populations may still harbor intrinsic
genetic variation naturally selected to cope with environmental
differences at the microhabitat level (Ramírez et al., 2014). In
highly heterogeneous mountainous environments, local-scale
environmental effects are known for shaping genetic diversity
and generating morphological diversity (Hughes and Atchison,
2015), which may prove useful in the reaction to climate change
within the same locality. There is already compiling evidence of
ecological-driven divergence in the radiation of Andean Espeletia
(Cortés et al., 2018a), besides allopatric differentiation and
isolation by distance (Diazgranados and Barber, 2017; Padilla-
González et al., 2017, 2018). Ecological parapatric speciation
is a likely consequence of local patterns of environmental
variation (Naciri and Linder, 2020) typically found at the Páramo
ecosystem (Monasterio and Sarmiento, 1991). For instance, frost
is more extreme in the wind-exposed high valley slopes than
in the wind-sheltered depressions of those valleys or in the
upper boundary of the cloud forest. Soil moisture content, higher
in the well-irrigated high valley depressions and in the upper
boundary of the cloud forest than in the drier slopes of the valleys,
could also contribute to this divergence. It now remains to be
explored whether this mosaic of environmental heterogeneity
has enforced enough heritable polygenic (Barghi et al., 2020)
phenotypic variation as a pre-adaptation (Nürk et al., 2018) to
the new selective forces imposed by climate change.

One potential caveat of our results precisely concerns data
availability at the micro-scale level. Bioclimatic data is reliably
modeled throughout the Páramo range at a 1 km2 spatial
resolution, which unfortunately overlooks micro-environmental
drivers of the local-scale genetic adaptation (De La Harpe et al.,
2017; Leroy et al., 2020). This is of particular importance
at mountain/alpine ecosystems (Ramírez et al., 2014; Cortés
and Wheeler, 2018), where microhabitats may serve as refugia
(Zellweger et al., 2020), like across the treeline due to active
landform processes (Bueno and Llambí, 2015; Arzac et al., 2019;
Gentili et al., 2020). Populations may rely on specific small-
scale habitat attributes that are likely to be overlooked by SDMs
(Sinclair et al., 2010), such as topographic, geomorphic, and
edaphic features, as well as the distribution of other taxa –
e.g., competitors and facilitators (Yackulc et al., 2015). Due
to this, SDMs may exhibit substantial uncertainty (Buisson
et al., 2010) and lack of validation (Botkin et al., 2007) at
local scales. Therefore, niche models could be insensitive to
micro-environmental processes, leading to an underestimation
of the mechanisms governing populations’ responses. Even if
bioclimatic models aim representing the realized niche, they
may then disregard the fundamental niche (Loehle and Leblanc,
1996). Despite statistical imputation-like approaches such as
environmental downscaling have been considered to model
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climate at a higher resolution for specific Páramo complexes
(Mavárez et al., 2018), consistently applying such techniques
across cordilleras seems unfeasible because accuracy would be
constrained by the accessibility of fine-scale bioclimatic data
from regional weather stations. These restraints are likely to
be overcome soon by incorporating microclimate into SDMs
(Lembrechts et al., 2019) through mechanistic algorithms
(Lembrechts and Lenoir, 2020) physiological models (Cortés
et al., 2013; López-Hernández and Cortés, 2019), hydrological
equations (Rodríguez-Morales et al., 2019; Correa et al., 2020),
in situ data logging, and remote sensing (Ramón-Reinozo et al.,
2019; Zellweger et al., 2019).

Another potential caveat of our inferences relate with data
availability across the entire Páramo area in the northern Andes.
Some components of the adaptive capacity score (i.e., protected
areas, agriculture, and mining pressures) are downloadable
only through national repositories, making standardizations and
comparisons across all Páramo complexes in different countries
impractical. Yet, it is worth to clarify that climate sensitivity,
adaptation capacity and vulnerability indices are not meant to
be absolute scores but rather relative values to compare among
Páramo complexes. In this sense, the power of our inferences
to rank Páramo areas is unlikely limited by the pessimistic
predictions of the future climate scenario RCP 8.5, making our
vulnerability index robust. Furthermore, our whole integrative
analytical pipeline is in line with the most up-to-date approaches
to carry out climate change vulnerability assessment (Ramirez-
Villegas et al., 2014; Valladares et al., 2014; Foden et al., 2018).

By assessing climate sensitivity and adaptive capacity across
Páramo sky islands, we predicted climate change vulnerability in
the rapidly evolving Espeletia complex, a syngameon (Cannon
and Petit, 2020) likely shaped by incomplete ecological speciation
(Nosil et al., 2009) and adaptive introgression (Fitzpatrick et al.,
2015; Martin and Jiggins, 2017). However, in order to gather
a more comprehensive view of climate change responses in
the high mountain ecosystems of the northern Andes, other
diverse and highly abundant plant genera in the Páramo (Hughes
et al., 2013) should be considered under a similar analytical
framework as the described here. Immediate candidates to follow
up this approach are Bartsia (Uribe-Convers and Tank, 2015),
Chusquea (Ely et al., 2019), Diplostephium (Vargas et al., 2017),
Hypericum (Nürk et al., 2013), Loricaria (Kolar et al., 2016),
Lupinus (Hughes and Eastwood, 2006; Vásquez et al., 2016;
Contreras-Ortiz et al., 2018), Oreobolus (Chacón et al., 2006;
Gómez-Gutiérrez et al., 2017), Puya (Jabaily and Sytsma, 2013),
and Senecio (Duskova et al., 2017; Walter et al., 2020). These
combined efforts would ultimately reveal whether the fastest
evolving biodiversity hotspot on earth, and in general tropical
high mountain ecosystems (Hedberg, 1964; Sklenáø et al., 2014;
Chala et al., 2016), have a chance to persist under current
environmental and anthropogenic threats.

PERSPECTIVES

Besides range shifts (Chen et al., 2011; Feeley et al., 2011;
Donoghue and Edwards, 2014; Kolar et al., 2016; Freeman et al.,

2020) and adaptive responses (Hoffmann and Sgro, 2011; Franks
and Hoffmann, 2012; Donoghue, 2019; Ørsted et al., 2019),
introgression, hybridization (Lafon-Placette et al., 2016), and
polyploidization (Han et al., 2019; Mason and Wendel, 2020;
Nieto Feliner et al., 2020) which have not been explicitly explored
in this study, may also provide innovative (Donoghue and
Sanderson, 2015) adaptive sources in plants (Abbott et al., 2013;
Marques et al., 2019). The Espeletia complex is known for a high
incidence of natural hybrids as told by phenotypic and genetic
markers (Rauscher, 2002; Pouchon et al., 2018). Hence, assessing
the role of reticulate evolution and adaptive introgression for the
Espeletia complex to face a changing environment will require
sampling of hybrids and their putative parental populations
across the Páramo’s current micro-ecological mosaic.

Even though hybrids could occupy intermediate niches,
persistence of populations in alpine environments that face
climate change is regarded as mostly mediated by local-scale
(i.e., microhabitat) variation (Cortés et al., 2014; Cortés and
Wheeler, 2018). For example, environmental heterogeneity may
provide new suitable locations for migrants within only a few
meters of their current locations (Scherrer and Körner, 2011),
driving in this way plant responses to warming (Zellweger et al.,
2020). More localized environmental data must then be gathered
(Zellweger et al., 2019), since current climate repositories lack
the resolution needed to describe the microhabitat heterogeneity.
Topographic and soil properties, often overlooked by climatic
models, are presumably key in defining Páramo’s wet and drier
microhabitats in the wind-sheltered high valley depressions, and
in the more wind-exposed slopes. This local-scale environmental
trend has diversity implications for other endemic plant species
in the northern Andes (Cortés et al., 2012a,b; Blair et al., 2016).
Besides high-resolution environmental data, eco-physiological
(Llambí and Rada, 2019; Sandoval et al., 2019) and ecological
adaptive traits (e.g., Bruelheide et al., 2018; Cortés and Blair,
2018) must be noted more systematically at local scales in
natural surveys and field tests, like reciprocal transplant assays
of ecotypes among microhabitats (as in Sedlacek et al., 2015),
and space-by-time substitution trials across altitudes (Cuesta
et al., 2017) and habitats (Wheeler et al., 2014, 2016). Ultimately,
micro-scales keep genetic variance (Cortés et al., 2011, 2018b;
Galeano et al., 2012; Kelleher et al., 2012; Blair et al., 2013,
2018; Cortés, 2013; Wu et al., 2020), morphological diversity, and
adaptive trait variation (Sedlacek et al., 2016; Pacifici et al., 2017).

Conservation efforts may also buffer the impact of climate
change on Páramo ecosystems by enhancing their adaptive
capacity. Vast areas of Páramo land now safe from conflict are not
being rapidly protected, making them susceptible to deforestation
for cattle and agriculture (Avellaneda-Torres et al., 2020), and
illegal logging (Vásquez et al., 2015) and mining (Pérez-Escobar
et al., 2018). Thus, improving the current network of protected
areas would help minimizing ongoing threats (Duchicela et al.,
2019), especially in the highly diverse Páramo complexes of the
Eastern Cordillera where putatively new species are still being
discovered (Diazgranados and Sanchez, 2017; Mavárez, 2019a).
Alongside adoption of mitigation policies, adaptation policies
(Elsen et al., 2020) may help safeguarding Páramos. Finding
more sustainable land uses by empowering local communities
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and developing ecotourism are then as essential to relieve human
impact on tropical-alpine plant diversity in the northern Andes.

Last but not least, extending the modeling approach
implemented in this work to other key pressures (e.g., fire,
Wu and Porinchu, 2019; Rivadeneira et al., 2020; Zomer
and Ramsay, 2020) and plant groups (Luteyn, 1999) in the
Páramo, as well as to other sky islands around the mountains
of the world (Hoorn et al., 2018; Pausas et al., 2018; Nürk
et al., 2019; Testolin et al., 2020), and more broadly to
other island-like systems (Papadopoulou and Knowles, 2015;
Lamichhaney et al., 2017; Cámara-Leret et al., 2020; Flantua
et al., 2020), will help understanding climate change effects
on unrelated taxa experiencing similar evolutionary processes
(Condamine et al., 2018; Cortés et al., 2020; Nürk et al., 2020).
Such systems offer natural experiments to assess the role of
colonization and adaptation (Ding et al., 2020; McGee et al.,
2020; Tito et al., 2020) in the past and ongoing responses to
climate change, which undeniably will complement ecological
predictive modeling.
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The Supplementary Material for this article can be found
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Supplementary Figure 1 | Frequency distributions of the number of records per
taxon (A), and the number of Páramo complexes (B) spanned by each of the 28
Espeletia taxa across Páramo sky islands in the Colombian Andes. Number of
records, and number of Páramo complexes spanned for each taxon are
drawn from Supplementary Table S2.

Supplementary Figure 2 | Pairwise Pearson correlation coefficients (r) among 19
WorldClim bioclimatic variables (in the baseline period 1970–2000), and Digital
Elevation Model (DEM) at a 30 s (1 km2) spatial resolution. Five bioclimatic
variables and DEM did not exhibit collinearity problems (Supplementary
Table S3) and were retained.

Supplementary Figure 3 | Ridgeline plots for the adaptive capacity (A), climate
sensitivity (B), and vulnerability (C) scores across 36 Páramo complexes in the
Colombian Andes. For comparative purposes, Páramo complexes are sorted in
(A) from those with a low adaptive potential to anthropic pressures according to
the enhancing and limiting factors depicted in Figure 3, in (B) from those likely to
experience a range loss (distributions below zero) to those predicted to exhibit a
range gain (distributions above zero) by 2050 (under RCP 8.5), while in (C)
Páramo complexes at the top are the most vulnerable. Ridgeline plots summarize
grid estimates shown in Figure 4.

Supplementary Figure 4 | Pairwise Pearson correlation coefficients (r) among
climate sensitivity (S), adaptive capacity (AC), climate vulnerability (V) and the
components of the adaptive capacity in the Espeletia complex across Páramo sky
islands in the Colombian Andes. The adaptive capacity enhancing components
were diversity (D), protected areas (PA) and forest area around the Páramo (F),
while its limiting factors were agriculture (A), mining (M) and rural population
density (RPD). The area of each of the 36 Páramo complexes is also considered in
hectares (Ha). Correlation estimates and 95% confidence intervals are presented
above the diagonal, while below the diagonal circles are colored and sized
accordingly. Estimates are gathered from Supplementary Table S7 and are
negatively transformed for agriculture (A), mining (M) and rural population density
(RPD) in order to aid interpretation.

Supplementary Table 1 | Occurrence data of 28 Espeletia taxa across Páramo
sky islands in the Colombian Andes. Occurrences were gathered as
georeferenced specimen data from GBIF. Given a starting set of 15,466 specimen
records, a total of 1,432 were kept after cleaning for georeferencing consistency
(i.e., non-redundant records located within the study area) and number of records
per species (to avoid distributions with less than 10 points, as suggested by

Frontiers in Ecology and Evolution | www.frontiersin.org 12 September 2020 | Volume 8 | Article 565708

https://doi.org/10.5061/dryad.gf1vhhmmp
https://www.frontiersin.org/articles/10.3389/fevo.2020.565708/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2020.565708/full#supplementary-material
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-565708 September 22, 2020 Time: 19:46 # 13

Valencia et al. Vulnerability of Espeletia to Climate Change

Van Proosdij et al. (2016) for narrow-ranged species). Espeletia taxonomy
follows Cuatrecasas (2013).

Supplementary Table 2 | Number of records for each of the 28 Espeletia taxa
across Páramo sky islands in the Colombian Andes, and altitudinal range for each
taxon. Number of records, number of Páramo complexes spanned, and minimum
and maximum altitudes for each taxon are gathered from
Supplementary Table S1.

Supplementary Table 3 | Variance Inflation Factor (VIF) for five non-collinear
(VIF < 10) WorldClim bioclimatic variables considered for modeling at a 30 s (1
km2) spatial resolution for the current and future scenarios, besides a Digital
Elevation Model (DEM). Absolute r-values ranged from 0.05 (BIO18∼DEM) to 0.65
(BIO15∼BIO18).

Supplementary Table 4 | Current model validation based on average Area Under
the ROC Curve (AUC) and porcentual contribution of the six non-collinear
environmental variables for each of the 28 Espeletia taxa. AUC in the training and
testing datasets are an aggregate measure of performance across all possible
classification thresholds. Pseudo-absences (number of background points) are
also averaged for each of the 28 putative taxa. Un-averaged statistics are kept in
Supplementary Table S5. The six non-collinear variables included five WorldClim
bioclimatic variables at a 30 s (1 m2) spatial resolution. Environmental variables
(Supplementary Table S3) are abbreviated as follows: (BIO2) Mean Diurnal
Range, (BIO4) Temperature Seasonality, (BIO15) Precipitation Seasonality, (BIO18)
Precipitation of Warmest Quarter, (BIO19) Precipitation of Coldest Quarter, and
(DEM) Digital Elevation Model.

Supplementary Table 5 | Current model validation based on Area Under the
ROC Curve (AUC) and relative contribution of the six non-collinear environmental
variables for each of the 10 runs in the 28 Espeletia taxa. The following overall
summary statistics are kept: optimum training subset, regularized training gains,
un-regularized training gains, effective iterations, training AUC, optimum testing

subset, test gains, test AUC, AUC standard deviation, pseudo-absences (number
of background points), and entropy. The following relative contribution scores are
kept for the six environmental variables: contribution, permutation importance,
training gain, test gain and AUC without and with only each variable. The six
non-collinear environmental variables (Supplementary Table S3) included five
WorldClim BIO variables at a 30 s (1 km2) spatial resolution, and are coded as:
(BIO2) Mean Diurnal Range, (BIO4) Temperature Seasonality, (BIO15) Precipitation
Seasonality, (BIO18) Precipitation of Warmest Quarter, (BIO19) Precipitation of
Coldest Quarter, and (DEM) Digital Elevation Model.

Supplementary Table 6 | Current model validation based on Akaike (AIC) and
Bayesian (BIC) Information Criteria per repetition of each of the 28 Espeletia taxa.
Optimum training and testing subsets are summed under NTR+TS.

Supplementary Table 7 | Climate sensitivity (S), adaptive capacity (AC), and
climate vulnerability (V) in the Espeletia complex across Páramo sky islands in the
Colombian Andes. The adaptive capacity enhancing components were diversity
(D), protected areas (PA) and forest area around the Páramo (F), while its limiting
factors were agriculture (A), mining (M) and rural population density (RPD).
Diversity (D), which is the number of Espeletia taxa totalized in a 1 km grid based
on the occurrence data downloaded from GBIF, and the inverse value of the
normalized rural population density (RPD) were scaled from 0 to 1. A total of 1,050
protected areas (PA) were rated as 1, 0.3, 0.1, and 0.1 for National Natural Parks,
Civil Society Reserves, Regional Natural Parks and National Protected Forest
Reserves, respectively, following (CIAT, 2017). Forest patches (F) around the
Páramo complexes (2 km around the tree line, 1 km grid) were recorded as
presence points (1 = presence), while agriculture (A) and mining (M) for the period
2010–2012 were marked as null data points (0 = presence) within the study area
and in its buffer zone (2 km around the tree line, 1 km grid). The area of each of
the 36 Páramo complexes is also presented in hectares (Ha), as well as
its name and ID number following Figure 2A, Morales et al. (2007) and
Londoño et al. (2014).
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