53 research outputs found

    Cetuximab-Containing Combinations in Locally Advanced and Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma

    Get PDF
    Cetuximab remains to date the only targeted therapy approved for the treatment of head and neck squamous cell carcinoma (HNSCC). The EGFR pathway plays a key role in the tumorigenesis and progression of this disease as well as in the resistance to radiotherapy (RT). While several anti-EGFR agents have been tested in HNSCC, cetuximab, an IgG1 subclass monoclonal antibody against EGFR, is the only drug with proven efficacy for the treatment of both locoregionally-advanced (LA) and recurrent/metastatic (R/M) disease. The addition of cetuximab to radiotherapy is a validated treatment option in LA-HNSCC. However, its use has been limited to patients who are considered unfit for standard of care chemoradiotherapy (CRT) with single agent cisplatin given the lack of direct comparison of these two regimens in randomized phase III trials and the inferiority suggested by metanalysis and phase II studies. The current use of cetuximab in HNSCC is about to change given the recent results from randomized prospective clinical trials in both the LA and R/M setting. Two phase III studies evaluating RT-cetuximab vs. CRT in Human Papillomavirus (HPV)-positive LA oropharyngeal squamous cell carcinoma (De-ESCALaTE and RTOG 1016) showed inferior overall survival and progression-free survival for RT-cetuximab combination, and therefore CRT with cisplatin remains the standard of care in this disease. In the R/M HNSCC, the EXTREME regimen has been the standard of care as first-line treatment for the past 10 years. However, the results from the KEYNOTE-048 study will likely position the anti-PD-1 agent pembrolizumab as the new first line treatment either alone or in combination with chemotherapy in this setting based on PD-L1 status. Interestingly, cetuximab-mediated immunogenicity through antibody dependent cell cytotoxicity (ADCC) has encouraged the evaluation of combined approaches with immune-checkpoint inhibitors in both LA and R/M-HNSCC settings. This article reviews the accumulated evidence on the role of cetuximab in HNSCC in the past decade, offering an overview of its current impact in the treatment of LA and R/M-HNSCC disease and its potential use in the era of immunotherapy

    Real‐world treatment outcomes of immune checkpoint inhibitors used off‐label in oncology: A comprehensive cancer institution experience

    Full text link
    Off-label use (OLU) is quite common in oncology due to the complexity of cancer and the time-consuming regulatory process. However, outcomes of OLU in cancer treatment remain unclear. This study aimed to evaluate the overall survival (OS), event-free survival (EFS), duration of treatment (DOT), and reason for treatment discontinuation in patients receiving immune checkpoint inhibitors (ICI) as OLU for solid tumors from 2011 to 2020. The study collected data on 356 episodes (353 patients), with a median age of 64.4 years, 36.2% women, and 14.6% ECOG >= 2. Median OS was 15.7 (11.9-18.7) months, and median EFS was 5.4 (3.8-6.6) months. Men, patients with metastatic disease or ECOG-PS higher than 1, had worse survival outcomes. The findings derived from this study provide valuable information regarding the real-world use of ICI-OLU and contributes to enhancing the decision-making process for individuals with cancer. Further research on immunotherapy outcomes of OLU in cancer is needed. imag

    Simvastatin Enhances the Effects of Radiotherapy and Cetuximab on a Cell Line (FaDu) Derived from a Squamous Cell Carcinoma of Head and Neck

    Get PDF
    Radiotherapy (XRT) delivered with the antibody cetuximab is a standard treatment option for squamous cell carcinomas of head and neck (SCCNH). Cetuximab acts by blocking epidermal growth factor receptor (EGFR) signaling to inhibit cancer progression. However, a significant percentage of patients will not respond to XRT and cetuximab. Statins reduce the synthesis of cholesterol and isoprenoid derivates that may be required for efficient EGFR signaling. We assessed whether the statin simvastatin could improve this combined therapy. In vitro, simvastatin enhanced the effects of XRT alone and in combination with cetuximab in wound healing, cell proliferation, and clonogenic assays in FaDu cells. These results were reflected in xenoimplanted tumors growing into subcutaneous tissue of athymic mice where concomitant treatment with simvastatin decreased tumor growth. Consistently, lower levels of phosphorylated extracellular signal-regulated kinases 1 and 2, phosphatidylinositol 3-kinase/AKT-protein kinase B, and signal transducer and activator of transcription 3 oncoproteins and higher levels of caspase-3 and apoptosis in cell cultures and xenografts were observed. The EGFR-overexpressing A431 cell line was used to reproduce these antitumor effects of simvastatin. Our findings suggest that simvastatin may improve the efficiency of concomitant XRT and cetuximab. Further investigation in the treatment of SCCNH is warranted

    Cetuximab-Containing Combinations in Locally Advanced and Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma

    Get PDF
    Cetuximab remains to date the only targeted therapy approved for the treatment of head and neck squamous cell carcinoma (HNSCC). The EGFR pathway plays a key role in the tumorigenesis and progression of this disease as well as in the resistance to radiotherapy (RT). While several anti-EGFR agents have been tested in HNSCC, cetuximab, an IgG1 subclass monoclonal antibody against EGFR, is the only drug with proven efficacy for the treatment of both locoregionally-advanced (LA) and recurrent/metastatic (R/M) disease. The addition of cetuximab to radiotherapy is a validated treatment option in LA-HNSCC. However, its use has been limited to patients who are considered unfit for standard of care chemoradiotherapy (CRT) with single agent cisplatin given the lack of direct comparison of these two regimens in randomized phase III trials and the inferiority suggested by metanalysis and phase II studies. The current use of cetuximab in HNSCC is about to change given the recent results from randomized prospective clinical trials in both the LA and R/M setting. Two phase III studies evaluating RT-cetuximab vs. CRT in Human Papillomavirus (HPV)-positive LA oropharyngeal squamous cell carcinoma (De-ESCALaTE and RTOG 1016) showed inferior overall survival and progression-free survival for RT-cetuximab combination, and therefore CRT with cisplatin remains the standard of care in this disease. In the R/M HNSCC, the EXTREME regimen has been the standard of care as first-line treatment for the past 10 years. However, the results from the KEYNOTE-048 study will likely position the anti-PD-1 agent pembrolizumab as the new first line treatment either alone or in combination with chemotherapy in this setting based on PD-L1 status. Interestingly, cetuximab-mediated immunogenicity through antibody dependent cell cytotoxicity (ADCC) has encouraged the evaluation of combined approaches with immune-checkpoint inhibitors in both LA and R/M-HNSCC settings. This article reviews the accumulated evidence on the role of cetuximab in HNSCC in the past decade, offering an overview of its current impact in the treatment of LA and R/M-HNSCC disease and its potential use in the era of immunotherapy

    Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma

    Get PDF
    Anti-programmed cell death protein 1 (PD-1) agents have become the standard of care for platinum-refractory recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) and are currently being evaluated in various disease settings. However, despite the gain in overall survival seen in some of the clinical trials, the majority of patients display primary resistance and do not benefit from these agents. Taking into consideration the potentially severe immune-related toxicities and their high cost, the search for predictive biomarkers of response is crucial. Besides Programmed death ligand-1 (PD-L1) expression, other biomarkers such as immune infiltration, tumor mutational burden or immune-gene expression profiling have been explored, but none of them has been validated in this disease. Among these, the microbiota has recently garnered tremendous interest since it has proven to influence the efficacy of PD-1 blockade in some tumor types. With the accumulating evidence on the effect of the microbiota in HNSCC tumorigenesis and progression, the study of its potential role as a predictive immune biomarker is warranted. This review examines the available evidence on emerging immune predictive biomarkers of response to anti-PD-1/PD-L1 therapy in HNSCC, introducing the microbiota and its potential use as a predictive immune biomarker in this disease

    The Multidisciplinary Team (MDT) Approach and Quality of Care

    Get PDF
    The core function of a multidisciplinary team (MDT) is to bring together a group of healthcare professionals from different fields in order to determine patients' treatment plan. Most of head and neck cancer (HNC) units are currently led by MDTs that at least include ENT and maxillofacial surgeons, radiation and medical oncologists. HNC often compromise relevant structures of the upper aerodigestive tract involving functions such as speech, swallowing and breathing, among others. The impairment of these functions can significantly impact patients' quality of life and psychosocial status, and highlights the crucial role of specialized nurses, dietitians, psycho-oncologists, social workers, and onco-geriatricians, among others. Hence, these professionals should be integrated in HNC MDTs. In addition, involving translational research teams should also be considered, as it will help reducing the existing gap between basic research and the daily clinical practice. The aim of this comprehensive review is to assess the role of the different supportive disciplines integrated in an MDT and how they help providing a better care to HNC patients during diagnosis, treatment and follow up

    The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    Get PDF
    Background: Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Methods: Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (gamma H2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. Results: We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by gamma H2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. Conclusions: The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

    Analysis of autophagy gene polymorphisms in Spanish patients with head and neck squamous cell carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is the sixth cancer on incidence worldwide. Tobacco and alcohol consumption are the most classical risk factors associated with its development. Autophagy process has a dual effect both in tumourigenesis and tumour suppressing activity. To investigate the importance of this pathway in HNSCC susceptibility, a risk factor matched case-control association study was performed with four candidate polymorphisms in autophagy genes (ATG2B, ATG5, ATG10, ATG16L1). We found an association between the variant in ATG10 rs1864183 and a higher susceptibility to develop laryngeal cancer, ATG2B rs3759601 and pharyngeal cancer and ATG16L1 rs2241880 and oral carcinoma. ATG5 rs2245214 SNP was not associated with any location. Overall, our results indicate the importance of the autophagy pathway in the susceptibility of head and neck squamous cell carcinoma and demonstrate the heterogeneity between its locations encompassed under a single terminology

    Translational research opportunities regarding homologous recombination in ovarian cancer

    Get PDF
    Homologous recombination (HR) is a DNA repair pathway that is deficient in 50% of high-grade serous ovarian carcinomas (HGSOC). Deficient HR (DHR) constitutes a therapeutic opportunity for these patients, thanks to poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi; olaparib, niraparib, and rucaparib are already commercialized). Although initially, PARPi were developed for patients with BRCA1/2 mutations, robust clinical data have shown their benefit in a broader population without DHR. This breakthrough in daily practice has raised several questions that necessitate further research: How can populations that will most benefit from PARPi be selected? At which stage of Ovarian Cancer should PARPi be used? Which strategies are reasonable to overcome PARPi resistance? In this paper, we present a summary of the literature and discuss the present clinical research involving PARPi (after reviewing ClinicalTrials.gov) from a translational perspective. Research into the functional biomarkers of DHR and clinical trials testing PARPi benefits as first-line setting or rechallenge are currently ongoing. Additionally, in the clinical setting, only secondary restoring mutations of BRCA1/2 have been identified as events inducing resistance to PARPi. The clinical frequency of this and other mechanisms that have been described in preclinics is unknown. It is of great importance to study mechanisms of resistance to PARPi to guide the clinical development of drug combinations
    corecore