3,892 research outputs found

    Brachial Artery Constriction during Brachial Artery Reactivity Testing Predicts Major Adverse Clinical Outcomes in Women with Suspected Myocardial Ischemia: Results from the NHLBI-Sponsored Women's Ischemia Syndrome Evaluation (WISE) Study

    Get PDF
    Background:Limited brachial artery (BA) flow-mediated dilation during brachial artery reactivity testing (BART) has been linked to increased cardiovascular risk. We report on the phenomenon of BA constriction (BAC) following hyperemia.Objectives:To determine whether BAC predicts adverse CV outcomes and/or mortality in the women's ischemic Syndrome Evaluation Study (WISE). Further, as a secondary objective we sought to determine the risk factors associated with BAC.Methods:We performed BART on 377 women with chest pain referred for coronary angiography and followed for a median of 9.5 years. Forearm ischemia was induced with 4 minutes occlusion by a cuff placed distal to the BA and inflated to 40mm Hg > systolic pressure. BAC was defined as >4.8% artery constriction following release of the cuff. The main outcome was major adverse events (MACE) including all-cause mortality, non-fatal MI, non-fatal stroke, or hospitalization for heart failure.Results:BA diameter change ranged from -20.6% to +44.9%, and 41 (11%) women experienced BAC. Obstructive CAD and traditional CAD risk factors were not predictive of BAC. Overall, 39% of women with BAC experienced MACE vs. 22% without BAC (p=0.004). In multivariate Cox proportional hazards regression, BAC was a significant independent predictor of MACE (p=0.018) when adjusting for obstructive CAD and traditional risk factors.Conclusions:BAC predicts almost double the risk for major adverse events compared to patients without BAC. This risk was not accounted for by CAD or traditional risk factors. The novel risk marker of BAC requires further investigation in women. © 2013 Sedlak et al

    Climate influences on flood probabilities across Europe

    Get PDF
    The link between streamflow extremes and climatology has been widely studied in recent decades. However, a study investigating the effect of large-scale circulation variations on the distribution of seasonal discharge extremes at the European level is missing. Here we fit a climate-informed generalized extreme value (GEV) distribution to about 600 streamflow records in Europe for each of the standard seasons, i.e., to winter, spring, summer and autumn maxima, and compare it with the classical GEV distribution with parameters invariant in time. The study adopts a Bayesian framework and covers the period 1950 to 2016. Five indices with proven influence on the European climate are examined independently as covariates, namely the North Atlantic Oscillation (NAO), the east Atlantic pattern (EA), the east Atlantic–western Russian pattern (EA/WR), the Scandinavia pattern (SCA) and the polar–Eurasian pattern (POL). It is found that for a high percentage of stations the climate-informed model is preferred to the classical model. Particularly for NAO during winter, a strong influence on streamflow extremes is detected for large parts of Europe (preferred to the classical GEV distribution for 46&thinsp;% of the stations). Climate-informed fits are characterized by spatial coherence and form patterns that resemble relations between the climate indices and seasonal precipitation, suggesting a prominent role of the considered circulation modes for flood generation. For certain regions, such as northwestern Scandinavia and the British Isles, yearly variations of the mean seasonal climate indices result in considerably different extreme value distributions and thus in highly different flood estimates for individual years that can also persist for longer time periods.</p

    Tight-Binding model for semiconductor nanostructures

    Full text link
    An empirical scpa3s_cp^3_a tight-binding (TB) model is applied to the investigation of electronic states in semiconductor quantum dots. A basis set of three pp-orbitals at the anions and one ss-orbital at the cations is chosen. Matrix elements up to the second nearest neighbors and the spin-orbit coupling are included in our TB-model. The parametrization is chosen so that the effective masses, the spin-orbit-splitting and the gap energy of the bulk CdSe and ZnSe are reproduced. Within this reduced scpa3s_cp_a^3 TB-basis the valence (p-) bands are excellently reproduced and the conduction (s-) band is well reproduced close to the Γ\Gamma-point, i.e. near to the band gap. In terms of this model much larger systems can be described than within a (more realistic) sp3ssp^3s^*-basis. The quantum dot is modelled by using the (bulk) TB-parameters for the particular material at those sites occupied by atoms of this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals). Strain-effects are included by using an appropriate model strain field. Within the TB-model, the strain-effects can be artifically switched off to investigate the infuence of strain on the bound electronic states and, in particular, their spatial orientation. The theoretical results for spherical nanocrystals are compared with data from tunneling spectroscopy and optical experiments. Furthermore the influence of the spin-orbit coupling is investigated

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal

    Duality and Multicritical Point of Two-Dimensional Spin Glasses

    Full text link
    Determination of the precise location of the multicritical point and phase boundary is a target of active current research in the theory of spin glasses. In this short note we develop a duality argument to predict the location of the multicritical point and the shape of the phase boundary in models of spin glasses on the square lattice.Comment: 4 pages, 1 figure; Reference updated, definition of \tilde{V} added; to be published in J. Phys. Soc. Jp
    corecore