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ARTICLE

Discovery of bilaterian-type through-guts in
cloudinomorphs from the terminal Ediacaran Period
James D. Schiffbauer 1,2*, Tara Selly 1,2*, Sarah M. Jacquet 1, Rachel A. Merz3, Lyle L. Nelson4,

Michael A. Strange5, Yaoping Cai6 & Emily F. Smith 4

The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina

and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving

their phylogenetic identity has remained a point of contention. The root of the problem is a

lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the

only available source of information—their external tubes. Here, using tomographic analyses

of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recog-

nizable soft tissues within their external tubes. Although alternative interpretations are

plausible, these internal cylindrical structures may be most appropriately interpreted as

digestive tracts, which would be, to date, the earliest-known occurrence of such features in

the fossil record. If this interpretation is correct, their nature as one-way through-guts not

only provides evidence for establishing these fossils as definitive bilaterians but also has

implications for the long-debated phylogenetic position of the broader cloudinomorphs.
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Commonly envisaged as a prelude to the Cambrian
Explosion, the terminal interval of the Ediacaran Period
( ~550–5391 million years ago (Ma)) chronicles several

monumental events during the evolutionary dawn of animal life.
Among the most significant are the emergences of biominer-
alization2 and active motility3, which demarcate this interval from
the rest of the Ediacaran Period. Toward the Period’s conclusion,
the first metazoan mass extinction event4,5 encompassed the
downfall of the archetypal Ediacaran biota. Their demise, how-
ever, was coincident with an ecological shift in which organisms
such as Cloudina and other occupants of this novel tube-building
morphotype4 become increasingly populous. Collectively, these
“cloudinomorphs” (to avoid conflating unresolved phylogenetic
relationships with shared morphologies6) were small, sessile, and
epibenthic, but they appeared with several key adaptations that
may have enhanced their chances for ecological success. These
attributes include: (i) the advent of macroscopic biomineraliza-
tion in the form of shelly external tubes2, potentially serving as an
impediment to predation7; (ii) the establishment of gregarious
habits that may signal the onset of metazoan ecosystem engi-
neering behaviors8 (but see also ref. 9); and (iii) the development
of enhanced larval dispersal mechanisms and presumably both
sexual and asexual reproductive habits10 versus stolon-like
reproductive modes of some members of the enigmatic soft-
bodied “Ediacara biota”11. These compounded ecological inno-
vations may have helped to place the cloudinomorphs as central
players in ushering in a phase of fundamental ecosystem reform
and increased trophic complexity12. Although its cause is equi-
vocal at present, the changing of the ecological guard from largely
sedentary Ediacara-type communities to much more dynamic
syn-“Cambrian Explosion” ecosystems was well underway in the
terminal Ediacaran. Indeed, as recently proposed4, this interval
possibly displays an even larger step-change in organismal and
ecological complexity than at the Ediacaran–Cambrian boundary
itself. Nonetheless, the most crucial task that remains is to
untangle the potential relationships between the organisms of the
Ediacaran Period and those well-defined as metazoans in the
Cambrian Period. The cloudinomorphs are one of the few groups
known to span the Ediacaran–Cambrian boundary13, and thus
understanding their phylogenetic position is key to unraveling the
evolutionary and ecological relationships between the seemingly
disparate biomes of the Ediacaran and Cambrian Periods.

The phylogenetic position of the cloudinomorphs has yet
remained unresolved, albeit not without effort. Previous
attempts2,14–21 have used the only available information (to date)
from the fossil record—their external tubes. Such features, spe-
cifically demonstrated by Cloudina, that have been employed to
help constrain their phylogeny include (but are not limited to): (i)
nested funnel-in-funnel tube construction14; (ii) smooth inner
tube wall lumen14; (iii) presence of daughter-tube branching10,14;
(iv) ovate tube cross-sections15; (v) bulbous shape of the closed
posterior bases10,14,16,17; (vi) absence of basal attachment struc-
tures15; (vii) calcareous composition in mineralized
representatives14,19,22; and (viii) microgranular tube wall ultra-
structures14. There are several caveats that should be considered,
however. First and foremost, some of these features are not
uniformly representative across all of the cloudinomorphs—
which should serve as a caution toward future attempts to resolve
relationships within this morphotypic group. Moreover, at least
some of these alleged diagnostic features (or lack thereof) may be
taphonomic noise rather than primary biological signal. For
instance, although a homogenous microgranular tube ultra-
structure is commonly reported for Cloudina14–16, lamellar
construction has also been observed16,23, raising the question
as to the influence of diagenetic recrystallization on retention
of primary ultrastructure24, or, for that matter, original

composition23. It thus follows that the degree of tube wall bio-
mineralization in addition to the original biomineral chemistry
has been met with differing interpretations19,22,23, likely com-
pounded by varying preservational and diagenetic histories
between localities23,24. The absence of substrate attachment
structures15 may be a consequence of displacement and transport
during storm events24,25, a common mode of deposition of
cloudinomorphs that yields fragmental tubes in detrital hash
resembling biohermal or reefal buildups9. Alternatively, if the
attachment structures were originally soft tissue, they may have
been taphonomically lost, in which case the absence of evidence
should not be construed as evidence for absence. Ovate cross-
sections may result from compression of a modestly flexible tube
during sediment compaction, which is almost certainly the case
for tubes of some cloudinomorph taxa that are interpreted to
have been originally organic6,26,27. As such, and as should be the
case with all enigmatic fossils, attempts at phylogenetic assess-
ment would be best suited to focus on taphonomically robust
features or those that can be best determined to be biologically
and taxonomically informative.

In conjunction with the influences of a complex and wide array
of taphonomic histories, placement of the cloudinomorphs is
further confounded when we consider the diversity of modern
tube-building organisms and their assumed convergence of tube-
dwelling habits28. Most agree that the cloudinomorphs are at least
of “lower” (phylogenetically earlier branching) diploblastic
metazoan-grade organization17. However, differences in the value
with which the aforementioned characteristics are weighted in
comparison with polyphyletic modern tube-builders can yield a
broad assortment of plausible affinities—ranging from chlor-
ophytes to triploblastic metazoans. Although more antiquated
interpretations have included presumably poriferan-grade
archaeocyathids2,18, recent discussion urged not to discount a
macroalgal affinity, owing to comparable annulated tubular
morphologies observed in modern calcareous dasyclad algae29.
Extinct microconchid lophophorates have also been offered as a
possible analog on the basis of tube structure and shape17.
Similarly, some pterobranch hemichordates produce dichot-
omous organic-walled tubes14 with reasonably comparable
morphologies, and thus may also warrant consideration. Other
authors have instead refused to wedge the cloudinomorphs into
any extant or extinct group—proposing otherwise that they
occupy their own incertae sedis stem-metazoan family,
Cloudinidae20,21. Satisfying the perceived majority of their
exterior tube characteristics, however, most researchers currently
fall into either anthozoan cnidarian15,19 or polychaete
annelid2,14,16,18 camps, but further distinction has been hindered
by the absence of preserved soft tissues.

Here, from fossils of the Wood Canyon Formation, Nye
County, Nevada, USA (Fig. 1), we provide a detailed report of
internal soft-tissue preservation within cloudinomorph fossils,
and, moreover, one of the earliest reports of preserved internal
anatomical structures in the fossil record. On the basis of the
morphology and interpreted physiology of this soft-tissue struc-
ture, we suggest that this feature holds significant potential to
shed new light on the phylogenetic placement of the
cloudinomorphs.

Results
Wood Canyon cloudinomorphs. The Wood Canyon fossil
assemblage is dominated by cloudinomorphic forms (Fig. 2).
These fossils, as well as others from nearby units, have been
taxonomically compared30 with the well-studied tubular fauna
of the Gaojiashan Lagerstätte, South China26 and, more recently,
to lesser-known cloudinomorphs from the East European
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Platform6,27. Systematic investigation of the Wood Canyon
cloudinomorph fossils has thus far formally described two new
species, Saarina hagadorni and Costatubus bibendi, as the most
abundant in this locality6. Taphonomically, the Wood Canyon
and Gaojiashan assemblages are highly comparable, with fossils
from both units predominantly exhibiting three-dimensional
pyritization31. However, whereas the majority of cloudinomorph
tubes from the Gaojiashan are completely pyritized (e.g., the full
tube volume is filled by pyrite mineralization)31, those from
Nevada show pyritized external tube walls retaining three-
dimensionality but without pervasive pyrite infilling. As a
result, the Nevadan cloudinomorphs offer a unique potential for

capturing resolvable soft tissues, and x-ray tomographic micro-
scopy (µCT) provides an ideal method for non-invasive
exploration of internal fossil features.

Unlike some of the cloudinomorphs that built more robust
shelly tubes14,17, the exterior tubes of the described Wood
Canyon cloudinomorphs are inferred to have been organic in
original composition from indications of plastic deformation6,

a

b

c

Fig. 2 Wood Canyon cloudinomorphs of the Montgomery Mountains site.
a Holotype of Saarina hagadorni, sample USNM-E1636_009_B13.
b Paratype of S. hagadorni, sample USNM-WCF_005_01. c Holotype of
Costatubus bibendi, sample USNM-MS_DS_12. Samples reposited at the
Smithsonian Institution. All scales= 1 mm, reproduced with permission
from Selly, T. et al.6 (in press) A new cloudinid fossil assemblage from the
terminal Ediacaran of Nevada, USA. Journal of Systematic Palaeontology,
https://doi.org/10.1080/14772019.2019.1623333.
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Fig. 1 Generalized stratigraphy of the Montgomery Mountains site.
Ediacaran–Cambrian boundary denoted by the presence of Treptichnus
pedum. Cloudinomorphs recovered from silty-shale below first dolostone
marker bed in the lower member of the Wood Canyon Formation. Nye
County indicated on map, with yellow star marking approximate sample
locality. Stratigraphy after refs. 6,30. ZQ= Zabriskie Quartzite; Stirling Qtz
= Stirling Quartzite.
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much like the Gaojiashan taxon Conotubus26 and East European
representatives of Saarina27. Generic and specific taxonomic
identification of the Nevadan tubular fossils containing soft
tissues is unfortunately muddied by a lack of substantive exterior
tube detail, likely resulting from chemical limitation during
preservation (see “Preservational model” below). The soft-tissue-
bearing tubular fossils exhibit exterior tube diameters
(~2–4 mm) that generally fall within the observed range for the
two described Wood Canyon cloudinomorph genera (maximum
diameters= 3.92 mm and 6.36 mm for Saarina hagadorni and
Costatubus bibendi, respectively), albeit greater than the median
diameter for either genus (median diameters= 0.74 mm and 1.09
mm for Saarina hagadorni and Costatubus bibendi, respectively)6.
We interpret the annulation of the tubes observed both optically
and by µCT as a vestige of a “funnel-in-funnel” tube construction
(Fig. 3), which supports the hypothesis of their cloudinomorphic
affinities.

From three-dimensional reconstructions of µCT data, internal
structures were revealed within the external tubes from a small
subset of the analyzed specimens (~11%; 4 of 35 analyzed
specimens; Figs. 3, 4, Supplementary Movies 1–3), which we here
interpret as preserved soft tissues. The soft-tissue feature
manifests as a sub-millimetric to millimetric diameter, centrally
positioned cylinder that largely follows the curvature of the
sagittal external tube length (Figs. 3, 4). In three of four cases, the
cylindrical feature is mostly continuous through nearly the full
length of the external tube (e.g., Fig. 3a), and only fragmented
taphonomically (Fig. 3b). One of these specimens (Fig. 3c) shows
significant kinking and sinuous bending of the internal cylinder
relative to its external tube. The other specimen shows instead an
incomplete internal cylinder (Fig. 4b), broken at a fragmented
section of the external tube and also assumed to be unpreserved at
the apical/posterior end of the external tube. When viewing the
µCT data transversely to the tube length, the internal cylinder
rests adjacent to the lower (with respect to bedding) internal
surface of the tube wall (Fig. 4f).

To better explore the transverse morphology and preserva-
tion of the internal cylinders, a portion of the fragmented
specimen (Fig. 4e) was selected for destructive preparation (via
manual serial grinding) and subsequent scanning electron
microscopic analyses. The sectioned soft-tissue cylinder was
observed to be either infilled by sediment or fully mineralized
(Fig. 5), and verified to be pyritic in composition. The external
tube was additionally confirmed to have been pyritized (mostly
weathered to iron oxyhydroxides), within a fine-grained
siliciclastic host rock matrix (Fig. 5a). In cross-sectional view,
the external tube can be complete (Fig. 5b), but appears more
robustly pyritized at the bottom edge (see transverse slices in
Supplementary Movie 2), and tenuous at the upper edge
(Fig. 5c–e), with respect to bedding. Where the interior tube
directly abuts the exterior tube, the exterior tube may be very
thin (as observed in Fig. 5c, d), but this appears to be a localized
phenomenon and is not apparent in all of the µCT- or SEM-
observed (Fig. 5e) transverse cross-sections. The exterior tube
shows marginal lateral compression (Fig. 5). In portions where
the internal cylinder is broadly sediment-filled, it displays ovate
cross-sections comparable in shape to the compressed external
tube (Fig. 5a–c). In some of these sediment-filled portions,
pyrite does exist within the interior of the tube, potentially
replicating an organic template. Portions of the internal
cylinder that are fully mineralized, in contrast, show circular,
uncompressed cross-sections (Fig. 5d, e). Where the internal
cylinder is sediment-filled, pyrite mineralization appears to
extend both inward (towards the cylinder interior) and outward
(into the lumen of the external tube) from a discernable
cylinder wall (Fig. 6).

Preservational model. Each case of soft-tissue preservation pre-
sents a balance between taphonomically constructive and
destructive processes, wherein retention and replication of bio-
logical information necessitates that decay does not eradicate, and
mineralization does not overwrite, informative features. Impeding
both decay and mineralization early in the taphonomic sequence
of the Nevadan cloudinomorphs created a “goldilocks” scenario
in which soft tissues may be distinguishably preserved, as
opposed to their Gaojiashan contemporaries. Pyritization pro-
ceeds because of a confluence of chemical and microbiological
factors, including: (i) a limited source of organic material (usually
the soft tissues of the deceased organism); (ii) focused degrada-
tion of that organic material by sulfate-reducing bacteria; and (iii)
anoxic pore waters rich in reduced iron along with available
sulfate. While oxidizing the remnant organic material of the
organism, sulfate-reducing bacteria (in normal seawater pH)
convert sulfate to bisulfide, which then serves as one of the
building blocks of pyrite along with reduced iron as the other31.

If any part of this process becomes chemically starved, fossil
pyritization will be halted. There are three paths that this can
take, based on limitation of either organic matter, reduced iron,
or sulfate. If bacterial sulfate reduction proceeds uninhibited by
sulfate availability, the organics of the decaying organism are
likely to be entirely consumed. This process, limited only by the
availability of organics, would leave no soft tissues to be
preserved, and should result in authigenic, centripetal pyrite
infilling31. In the other two cases, pyritization can cease relatively
early in the taphonomic sequence once the burial environment
becomes chemically limiting (assuming no replenishment). If the
availability of reduced iron is limited, pyrite formation will
discontinue, but further degradation of the organics by sulfate
reducers could continue unrestricted. Where sulfate concentra-
tion is instead limited, decay by sulfate-reducing bacteria would
cease once the sulfate supply is expended. In turn, with no further
generation of bisulfide, pyrite formation would be subsequently
suspended once the available bisulfide is exhausted. Regardless
which pathway is realized in the Wood Canyon burial
environment, the necessary ingredient to preserve these soft
tissues, and have them remain perceivable, is to terminate
pyritization before overgrowth can obscure or homogenize the
features.

In the Gaojiashan, pyritization likely proceeded uninhibited by
sulfate or reduced iron31–33. Thus, even though the external tube
morphology may be faithfully replicated in this assemblage, any
internal structures were homogenized or obliterated by the
combination of continued decay and mineralization. Conversely,
we infer that pyritization of the Nevadan cloudinomorphs was
abbreviated early in the taphonomic sequence by sulfate or
reduced iron limitation. To briefly summarize taphonomy in the
Wood Canyon (see also Fig. 7): (i) The initial burial event
emplaced the cloudinomorphs within the sulfate reduction zone
of the sediment (oriented prone to bedding, whether34 or not35

this was their in-vivo position). (ii) Decay by sulfate-reducing
bacteria commenced, producing bisulfide that initiated pyrite
mineralization. (iii) In a significantly sulfate-restricted local
environment (with no sulfate replenishment), we infer that the
rate of bacterial sulfate reduction may have also been diminished
once sulfate concentrations dropped below rate-independent
levels36. With tempered bacterially mediated decay, the earliest
stages of mineralization focused on the two most histologically
suitable loci for pyrite nucleation—the robust organic walls of the
exterior tube and the presumably more labile internal soft-tissue
cylinder. We suggest that pyrite mineralization of the external
tube and internal cylinder occurred nearly simultaneously, as
evidenced by the observed similarity in their compressed, ovate
cross-sections from sediment compaction. (iv) Once structural
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Fig. 4 Optical imaging and µCT of cloudinomorph pyritized tube and soft tissue. a Light image of entire specimen (sample USNM-WCF_001) in plan-
view, specimen partially obscured at rock surface. b Corresponding 3D volume render, showing soft tissue (orange) and tube wall (gray); boxes d, e are
marked in both a, b to help guide slight differences in orientation. c Close-up view of labeled box in a, highlighting funnel rims (arrows) on external tube.
d Close-up view of labeled boxes in a, b, 3D volume render showing partial soft tissue and funnel rims (arrows); d largely overlaps with c, but includes also
host rock encased portion of the fossil. e Partial soft tissue from labeled boxes in a, b. f Cross-sectional view of e showing relative position of soft tissue
that has settled to the bottom of the external tube wall. Sample reposited at the Smithsonian Institution. All scales= 2mm.

a cb

Fig. 3 Soft tissue-bearing cloudinomorphs with schematic interpretation. 3D volume render from µCT data shown in left image per frame (red-to-orange
coloration indicates high density internal regions within exterior tube), with interpretive diagram in right image per frame. Examples here show a medial
position and consistency (sample USNM-N1601_FL_018), b partial degradation/fragmentation (sample USNM-E1630_006), and c kinking and folding
(sample USNM-N1601_FL_017). Soft tissue in sketches highlighted in red. Samples reposited at the Smithsonian Institution. All scales= 2mm, sketches
provided by Stacy Turpin Cheavens.
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Fig. 6b
Fig. 6c

d

cFig. 6a
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a

e

EDS

FeS2 -Al-Si-K

f

e

d

c

b

SEM µCTa

Fig. 5 Cross-sectional morphology of preserved cloudinomorph soft tissue. Cross-sections revealed by serial grinding of specimen USNM-WCF_001
illustrated in Fig. 4 (sample USNM-WCF_001); portion of the fossil chosen for grinding shown in Fig. 4e. a–e Light and SEM images matched with
approximately equivalent µCT tomographic slices (differences in obliquity imposed during serial grinding). Far right in a shows tube and gut pyritization via
EDS elemental mapping. f Position of slices (a–e and Fig. 6a–c) shown on µCT tomographic slice through the transverse plane. All scales= 2 mm.

FeS2 -Al-Si

a

c

b

Fig. 6 Additional detail of cross-sectional morphology. SEM backscattered electron micrographs (Z-contrast) of specimen USNM-WCF_001, as shown in
Figs. 4, 5. Positioning of slices identified in Fig. 5f. Each row corresponds to a single slice at increasing magnifications from left to right (rows a–c); dashed
boxes in left and middle columns correspond to location for higher magnification images. Right-most frame in row c shows EDS elemental map of middle
frame in row c. Soft tissues in these slices are partially pyrite-infilled (increasingly so from a to c), though distinct sediment grains can be observed. Note
also distinct soft-tissue wall boundaries, indicated by black arrows in higher magnification views. White arrows in higher magnification views of rows a, b
indicate inferred direction of pyrite precipitation from soft-tissue wall, centripetally toward the interior and centrifugally from the exterior. Scales= 200 µm
for left-most column, and 100 µm for middle and right-most columns.
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integrity of supporting soft tissues was compromised through
decay, the pyritizing soft tissues gravitationally settled to the
imposed bottom of the external tube37. Thus, both the ventral
positioning of the internal cylinders within the recumbent
external tubes and the distinction between bedding-respective
dorsal and ventral coherency of exterior tube pyritization (or
perhaps ventral-inward pyrite infilling) serve as geopetal
indicators. The gravitational slumping of the decaying soft tissue
within the tube, as oriented recumbently, would have increased
the distance for diffusion of bisulfide toward the upward-
positioned wall of the exterior tube. If the reduced iron

concentration was high in the burial setting, pyritization would
have therefore been focused more towards the decaying soft
tissues38, resulting in the observed preservational pattern. The
kinked soft tissue observed in Fig. 3c may present a slightly
different scenario, wherein the organism had died and slumped
within its external tube prior to burial positioning or reposition-
ing. And (v), either early sulfate exhaustion caused microbial
decay by sulfate reducers to cease, or reduced iron was expended
in the burial environment—thus halting continued pyritization.
The former chemical limitation may be more realistic. That is, if
local sulfate concentrations instead remained sufficient to fuel
continued (and less rate-restricted) bacterial sulfate reduction, it
is probable that all of the soft tissues of the tube-dweller,
including the internal cylindrical structure, would have been
more rapidly exhausted. This taphonomic scenario likely would
have yielded preservation of the exterior tube with more
substantive detail, but leaving no soft tissues to be preserved.
We suggest that this is likely the norm for the majority of the
specimens recovered from the Wood Canyon Formation (Fig. 2).

Resolving phylogeny from soft tissue evidence. In order to
provide an improved phylogenetic resolution on the cloudino-
morphs, we must first consider which soft tissues are most likely
to fossilize. Although they may be rare, there is no shortage of
preserved internal soft-tissue structures reported from the fossil
record. Fossilized internal soft tissues in the Ediacaran are limited
to one possible occurrence of a muscular cnidarian39; on the
other hand, Cambrian examples are much more numerous and
diverse, including cardiovasculature40, nervous and neurological
tissues41, musculature42, and copious reports of digestive tracts43.
In Cambrian lagerstätten, guts are the most frequently preserved
internal structures44. Whereas fossil vasculature or nervous tis-
sues are preserved as compressed or flattened features40,41 and
musculature as bundled fibrous structures42, fossil guts can reveal
a broadly tubular nature where three-dimensionally preserved,
and sometimes occur with the presence of associated digestive
glands43,44. Cambrian guts are typically preserved either as car-
bonaceous films45, sediment infillings46, or via phosphatization44,
the latter of which is potentially reflective of the organism’s
digestive physiology. However, there are limited (and perhaps
contentious) examples of gut pyritization47 (but see also ref. 48) as
well as gut-content pyritization46. The consistent geopetal nature
of the pyritized soft-tissue structures observed here supports the
notion that they were originally centrally located structures
in vivo, rather than adjacent to the exterior tube wall. At this
stage, we can only speculate on the potential histological under-
pinnings that resulted in preferential pyritization of these fea-
tures. It is instead their cylindrical expression, propensity for
preservation in Cambrian fossils44,45, and consistent size, shape,

(In vivo)

(Initial burial)

(Decay, compaction, pyritization)

(Continued pyritization)

(Cessation)

a

b

c

d

e

Fig. 7 Proposed taphonomic sequence of the Wood Canyon
cloudinomorph soft tissues. a Cloudinomorph in hypothesized life position.
External soft tissue hypothesized, modeled after siboglinid polychaete.
b Burial by rapid sedimentation and initiation of decay. Sediment begins to
enter tube cavity. c Burial compaction of the outer tube from weight of
overlying sediment. Early pyritization begins on interior surface of external
tube and on both interior and exterior surface of soft-tissue cylinder.
d Continued pyritization of exterior tube and soft-tissue cylinder. Inset of
soft-tissue cylinder wall showing both inward and outward framboidal
pyrite growth. e Remaining soft tissue decays, leaving pyritized exterior
tube and interior soft-tissue cylinder. Gravitational settling of pyritized
internal cylinder adjacent to lower external tube boundary. Illustration by
Stacy Turpin Cheavens.
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and position within the external tube that most endorse a gut
interpretation (Fig. 7).

Despite being soft tissues, the tendency for gut tracts to be
preserved is likely amplified by several factors. Not only can
portions of the digestive tract in some organisms be lined with
decay-resistant cuticle43, but guts are also segregated environ-
ments hosting their own microbiome and ions sourced from
microbial metabolisms and ingested contents at the time of
death44,49. Guts can thus be isolated and accentuated taphonomic
vessels, providing ideal conditions for self-contained mineraliza-
tion. As observed here, the presence of centripetally precipitated
pyrite inward from an apparent soft-tissue cylinder wall suggests
that their preservation did indeed proceed from the interior
(Fig. 6). The next key challenge is to identify, within reasonable
cloudinomorph assignments (Supplementary Table 1) and from
both morphological and taphonomic perspectives, which soft
tissue structures—whether guts or otherwise—could conceivably
leave comparably preserved cylindrical structures (Fig. 8, Supple-
mentary Fig. 1). Below, we detail the two primary but debated
assignments for the cloudinomorphs—cnidarians and annelids—
and offer supplemental treatment on other possibilities (hemi-
chordates and phoronids, see Supplementary Discussion).

Cnidarians. Cnidarians, and more specifically anthozoans, have
probably received the most attention as a logical affinity for the
cloudinomorphs. Similarities reported between morphological
characters of anthozoans and Cloudina15 (Supplementary
Table 1) have served to propagate a cnidarian interpretation
through the literature. On the other hand, anthozoan internal
anatomy is markedly disparate from cylindrical structures
observed here. Cnidarians, regardless of class affiliation, are
defined in part by the possession of a sac-like gastrovascular
coelenteron (Fig. 8a); this simple two-way digestive system has a
single orifice for the intake of food and expulsion of waste. Within
the anthozoans, the upper portion (the pharynx) can be broadly
tubular, opening into a larger, mesentery-lined, and grossly tub-
ular gastrovascular cavity with numerous outpocketings defined
by septa, unlike anything observed herein. These numerous septa,
which can be calcitic and thus easily preservable, provide struc-
tural support of the tubular pharynx and gastrovascular cavity,
but such structures are not observed in any cloudinomorphs.

Another possibility that should be considered is that our
preserved soft tissues could represent the entire soft-tissue body,
rather than an internal feature, of tube-dwelling hydrozoan
polyps. Although generally rare and somewhat contentious in the
fossil record, hydroid fossils have been reported dating back to
the Cambrian50. Many hydrozoans live in colonial habits joined
by an interconnected network of canals and exterior skeletal
branches, for instance, perhaps akin to such modern calcareous
examples as Millepora fire corals51. The cloudinomorph tube
construction is strikingly different from the densely porous tubes
of the fire corals, but a more important distinction may be found
in the pattern of tube branching. If a colonial hydrozoan
assignment were fitting for the broader cloudinomorphs, one may
expect branching to be more common than observed. Although
single-tube branching is known in Cloudina and presumed to
indicate asexual budding behavior10,14, it has not been observed
in most other comparable tubiform cloudinomorphs, such as
those reported here from Nevada6 and elsewhere26,52,53. At last,
no indications of tentacles are found in the soft tissues reported
herein, which have been considered diagnostic characters in a
rigorous evaluation of putative fossil hydrozoans50. Although this
may pose concern for such an interpretation here, rapid
taphonomic loss of tentacles has been shown to be likely54.
Nevertheless, granting that features of cloudinomorph external

tubes have been deduced to be very generally cnidarian as
compared to other plausible affinities15, the straight, sagittally
continuous soft tissues, whether guts or not, are difficult to
reconcile in favor of such an affinity.

Annelids. The combination of straight, cylindrical soft tissues,
and external tube structures may designate polychaete annelid
worms as the most fitting phylogenetic position for the cloudi-
nomorphs. Not only do annelid through-guts express simple
cylindrical morphologies (Fig. 8b), but the external tubes of the
tube-building annelids are also at least structurally comparable to
the cloudinomorphs, contrary to previous assertions15. For
instance, one of the features that has been used as a primary
argument against a polychaete affinity15 is the presence of closed
posterior tube ends. Closed ends are known from some poster-
iorly complete cloudinomorphs, notably Cloudina14 and Con-
otubus26; although other cloudinomorphs, like Saarina, may have
had only partially closed or constricted posterior tube ends27.
This feature may therefore not be ubiquitous within the cloudi-
nomorphs without clear evidence for a closed basal tube end
across all members. Perhaps more importantly, the previous
claim15 that closed bases are absent in modern tube-dwelling
polychaetes is unsupported by zoological literature. For example,
siboglinids are known to have closed bases55 and many other
tube-dwelling polychaetes possess dedicated anatomical struc-
tures (ciliated fecal grooves) or other behavioral strategies to keep
waste from accumulating in a closed posterior end of the tube. A
second unsubstantiated argument15 is that polychaete tubes are
not composed of nested funnels, but such a tube construction is
in fact found in siboglinids like Oasisia (Supplementary Fig. 2).
Finally, the mode of asexual reproduction by budding as inferred
from branching in Cloudina tubes10,14 is sometimes thought to be
more indicative of a cnidarian affinity. Tube-dwelling serpulids
among other polychaetes, however, are known to undergo com-
parable clonal reproduction55—though not all cloudinomorphs,
including those reported here6, show evidence of external tube
branching. The point here is not to invalidate a valuable character
evaluation of Cloudina15, but instead to offer caution to its
applicability to the broader cloudinomorphs and limited

(Anthozoan) (Polychaete)a b

Fig. 8 Diagrammatic comparison of candidate taxa for cloudinomorph
affiliation. Sections of the tubes and body walls are removed to illustrate
gut tracts (red). a Anthozoan coelenteron showing upper, tubular pharynx
and lower, sac-like gastrovascular cavity with mesentery structure.
b Polychaete annelid with straight through-gut path. Illustration by Stacy
Turpin Cheavens; see also diagrams in Supplementary Fig. 1.
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comparisons with modern tube-dwelling polychaetes. Although
the contribution by Vinn and Zatoń15 effectually compares
morphological characters of Cloudina to broad-stroke cnidarians,
their comparison with tube-dwelling polychaetes, instead, much
more narrowly focuses on three sessile, tube-dwelling families—
sabellids, serpulids, and cirratulids. The choice of these families
clearly results from their calcareous tube-building habits in
relation to the tubes of Cloudina, but information provided by the
fossil record seems incompatible with such comparisons56. The
records of sabellids and serpulids extend only into the Carboni-
ferous and Triassic57, respectively, and the cirratulids have a
much younger appearance in the Oligocene58, thus casting doubt
on the appropriateness of these families as acceptable
comparators.

The overarching phylogenetic systematics of the ecologically
diverse annelids is complicated and controversial59. They can be
generally divided by life mode and feeding strategies into two
reciprocal monophyletic major clades—the Errantia (free moving,
predatory forms) and the Sedentaria (sessile, tube-dwelling
forms)59—but they additionally include five basally branching
lineages (Oweniidae, Magelonidae, Chaetopteridae, Amphinomi-
dae, and Sipuncula; see Supplementary Fig. 3). The lowest
branching of these are tube-dwellers, the oweniids and magelo-
nids59. Together, these two families form a monophyletic sister
group to the other annelids, the Palaeoannelida59, followed by the
basally branching, tube-building chaetopterids60.

Outside of the three previously targeted sedentarian families15,
placing the cloudinomorphs within any other specific polychaete
designation may still impose a chronological gap, albeit likely
more reconcilable, between the terminal Ediacaran and the
earliest fossil record of readily identifiable polychaete tubes. The
earliest potential examples of polychaete tubes previously
reported are indeed Cambrian in age, including organopho-
sphatic chaetopterid tubes (Hyolithellus) from Greenland61 and
calcareous tubes of Coleoides and Ladatheca from Newfoundland
and England62,63. Although it is important to note that a record
of polychaete tubes is ostensibly absent from exceptional
Cambrian lagerstätten, such deposits do provide several plausible
tube-free annelid fossils, such as (among others) stem-annelids
from the Sirius Passet64; sipunculids, remarkably similar to recent
examples, with preserved gut tracts from the Maotianshan
Shale65; and numerous polychaetes from the Burgess Shale, most
of which preserve gut tracts45. Furthermore, moderate tapho-
nomic survival of annelid gut tracts has been demonstrated by
decay experiments with polychaetes37. These fossils ultimately
suggest the divergence of at least the basal-most annelid branches
(the palaeoannelids and chaetopterids) within the Cambrian
Period60. We thus advocate an expanded investigation of the
diversity of unresolved but comparable tubiform fossils across the
Ediacaran–Cambrian transition13 in an effort to help potentially
connect these records.

Behavioral considerations. The structure and ingested contents
of fossil guts hold significant potential to be behaviorally and
ecologically informative. For instance, the preservation of diges-
tive glandular structure and recognizable prey items in the gut
contents of Cambrian ecdysozoans have been used as verification
of a predatory or scavenging life mode43,44,66,67. These simple
cylindrical cloudinomorph soft tissues, however, are lacking any
detail of differentiation or compartmentalization—which is not
necessarily problematic for a polychaete interpretation68. Por-
tions of the soft-tissue cylinder that are fully mineralized, as well
as other sections that show sediment infill, can both be resolved
with a gut interpretation. First, regions of pyrite infilling of the
cloudinomorph guts may tentatively represent mineralization of

ingested, non-descript, organic detritus, similar to gut-content/
cololite pyritization observed in Cambrian trilobites46. Alter-
natively, these internal gut structures (Figs. 5c, d, 6) may repre-
sent pyritized internal gut folds like typhlosoles, which are known
to occur in annelids, though the taphonomic resolution and
three-dimensional continuity of these features is unfortunately
poor. Second, if the observed simple morphology is biologically
faithful, in conjunction with their posited sessile habit, then we
may be able to deduce that the cloudinomorphs were likely det-
ritivorous and presumably deposit-to-suspension feeders68. The
flexibility in feeding behaviors of modern-day tube-dwelling
polychaetes may provide insight on the presence of sediment
encased within these fossil soft tissues. Specifically, Owenia and
several spionids are among species that can switch between sus-
pension feeding and deposit feeding behaviors depending
on external conditions69. These organisms are normally suspen-
sion feeders in higher current flow, taking food from the water
column with their tentacular palps. However, when water current
is low and suspended food is unavailable, they tend to employ
surface deposit feeding by placing their palps on the surface of the
substrate, during which sediment is commonly ingested69. This is
not meant to suggest that other tube-dwellers could not have
behaved similarly, but it is actualistic evidence provided directly
by potential modern analogs. The potential feeding flexibility
of the cloudinomorphs adds diversity in Ediacaran feeding
modes, for example, building on recent suggestions of macro-
scopic suspension feeding by Ernietta70 and scavenging by motile
bilaterians71.

Discussion
To our knowledge, the structures reported herein are not only the
first recognizable soft tissues in cloudinomorphs, but also the
oldest guts yet described in the fossil record. As such, the Wood
Canyon tubular fossil assemblage has provided a unique view into
early animal anatomy. Nonetheless, for at least the cautions listed
throughout the discussion above, we choose to refrain from
shoehorning the cloudinomorphs into any explicit polychaete
family. However, it is the sum of their parts—including the
external tube structure, internal soft tissues, and presumed
behavioral considerations—that may best denote placement
amongst the Annelida as the most plausible. The accord of
sequencing-based phylogenies59,60 and the available fossil record
indicates that stem-annelids, regardless of whether they exhibited
a tube-dwelling habit or not, had diverged by at least the early
Cambrian—and thus a placement of the terminal Ediacaran
cloudinomorphs within basal branches of the annelids is very
likely not unreasonable. If these structures are indeed guts, they
are the earliest in the record, fortify a terminal Ediacaran presence
of bilaterians, demarcate the divergence of the Lophotrochozoa,
and, perhaps, help to build a phylogenetic bridge across the
Ediacaran–Cambrian boundary to the diversity of annelids
known from post-Cambrian Explosion lagerstätten. Nevertheless,
when taken together, the novelties provided by the cloudino-
morphs in the terminal Ediacaran—including the advent of
macroscopic biomineralization2, the establishment of plausible
ecosystem engineering behaviors8, the enhancement of larval
dispersal mechanisms and sexual and asexual reproductive
habits10, plausibly novel feeding strategies, and direct soft-tissue
evidence of a through-gut—signpost an immense ecological leap
towards the rapid metazoan diversification that transpired geo-
logically soon after.

Methods
Sample collection. The fossils reported here were collected as part of broader
studies on the taxonomy6 and biostratigraphic utility of the tubular fossil assem-
blages from south-central Nevada30. In the Montgomery Mountains, the informal
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lower member of the Wood Canyon Formation is predominantly interbedded
siltstone and sandstone, interpreted to have been deposited in a shallow marine
paleoenvironment30. Three shallowing-upward parasequences in the lower mem-
ber, each capped by dolostone marker beds, provide a regionally consistent stra-
tigraphic framework (Fig. 1). The second dolostone marker contains the nadir of
the basal Cambrian negative δ13C excursion, and immediately underlies the beds
bearing the Cambrian GSSP (Global Boundary Stratotype Section and Point)
ichnofossil Treptichnus pedum30,72. The cloudinomorphs were recovered from the
first of the parasequences, within a ~5 m siltstone to shale interval below the first
dolostone marker30. No radiometric ages for these strata currently exist, but a fossil
assemblage that includes erniettomorphs, cloudinomorphs, and possible Swart-
puntia have all been described from the lower member of the Wood Canyon
Formation30,73, together comprising a typical late Ediacaran Nama-type
(~550–539Ma) assemblage.

X-ray tomographic microscopy. Primary µCT data collection was conducted
using a Zeiss Xradia 510 Versa x-ray microscope. Optimal source conditions,
filters, and scan durations varied by sample. All scans were conducted at 80 kV
source voltage, 7W source power, and using the 0.4 × detector objective. Resulting
serial x-ray attenuation slices were viewed and 3D reconstructions were conducted
with Avizo 9.7 software (Thermo Fisher Scientific) in order to verify coherency,
shape, and position of the soft-tissue structures.

Serial grinding. Subsequently, one of the soft-tissue-bearing samples was selected
for destructive preparation in order to directly view the soft-tissue structure via
optical and scanning electron microscopy. We used manual serial grinding (using a
Buehler EcoMet250, with grinding intervals of ~0.25 mm) with reflected light
microscopy (using a Nikon SMZ1500 binocular microscope with an attached
Nikon D600 digital SLR camera) to view the cross-sections of the preserved soft
tissues.

Scanning electron microscopy. For compositional characterization, we analyzed
individual cross-sections using a Zeiss Sigma 500 variable pressure scanning
electron microscope (VP-SEM). Backscattered electron images were collected using
a high-definition five-segment backscattered electron detector under identical
operating conditions (8.5 mm working distance, low vacuum mode (40 Pa chamber
pressure, 99.999% nitrogen gas atmosphere), 20 keV beam accelerating voltage,
high current mode (40 nA), and a 60 µm aperture). In addition, energy dispersive
x-ray spectroscopy (EDS) was conducted using dual, co-planar Bruker 6│30 EDS
units integrated on the Sigma 500 VP-SEM, using the same operating conditions as
above, with the exception of aperture size (120 µm) to improve x-ray count rate.
Count rates were on the order of ~300,000 counts per second, combined from both
EDS detectors.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All fossil materials will be reposited in the Smithsonian Institution. Sample IDs of fossils
with soft-tissue preservation, ordered by appearance in figures: USNM-N1601_FL_018;
USNM-E1630_006; USNM-N1601_FL_017; USNM-WCF_001. Data sets generated
during the current study, including raw tiff stacks from µCT analyses and images and
data files from SEM and EDS analyses, are available from the corresponding authors on
reasonable request.
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