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Introduction

Using an interface with an MHD equilibrium code [1], linear and nonlinear gyrokinetic sim-

ulations are carried out with the flux tube version of the GENE code [2, 3] with the aim of

analyzing a TCV shot for which an electron internal transport barrier (eITB) was obtained.

Starting from experimentally relevant parameters, scans in the density and ion temperature gra-

dient are carried out in order to investigate their influence on particle transport. In particular one

is interested in finding gradient values for which the particle flux cancels out. In order to address

the issue of non-local effects in turbulent transport, some of the standard flux tube assumptions

have been released in the GENE code, which is thus extended to allow for radial variations of

the equilibrium quantities. Comparisons with other global codes are presented.

Gyrokinetic equation

One shall present here the equations implemented in the global version of the GENE code,

more details can be found in [4]. The corresponding local equations are obtained by neglecting

radial variations of equilibrium profiles. The field aligned coordinate system ~X = (x,y,z) is

considered, with x a radial like coordinate, y the binormal coordinate labeling the magnetic

lines on a given magnetic surface and z a parallel coordinate. The directions ~∇x and ~∇y are

perpendicular to the magnetic field ~B0(x,z) with the relation ~B0 = C (x)~∇x ×~∇y . The j th

particle distribution function f j(~X ,v‖,µ), with v‖ the velocity parallel to the magnetic field and

µ = m jv
2
⊥/(2B0) the magnetic moment, is divided into an equilibrium and a perturbed part,

f j = f0 j + f1 j, with f0 j chosen as a time-independent local Maxwellian, and is assumed to

be a stationary solution to the unperturbed gyrokinetic equation. Considering the assumption
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|k‖| � |k⊥| we obtain the following form of the gyrokinetic Vlasov equation :
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where g1 j = f1 j +q j v‖Ā1‖ f0 j/T0 j, χ̄1 = Φ̄1−v‖Ā1‖, Γα, j = ∂α f1 j + ∂α(q jΦ̄1) f0 j/T0 j for α =

(x,y,z), and the overbar notation denotes gyroaveraged quantities. In addition one defines n0 j(x),

T0 j(x), p0(x) as respectively the density, temperature and pressure, and their logarithmic gra-

dients LA(x) = −(d lnA/dx)−1 for A = [n j,Tj, p]. Finally Kx(x,z) and Ky(x,z) are related to

curvature and magnetic field gradient, Ω j(x,z) = q j B0/m j, B∗
0‖(x,z,v‖) = B0 + |(m j/q j)v‖(~∇×

~b0) ·~b0, with~b0 = ~B0/B0 and J(x,z) is the Jacobian of the (x,y,z) coordinates. The perturbed

electrostatic potential Φ1 and vector potential A1‖ which appear in Eq. (1) are self-consistently

obtained by solving the quasineutrality equation, and the parallel component of Ampère’s law.

In the global version of the code, radial derivatives are computed using finite differences, and

Dirichlet boundary conditions are used. In the local version, however, the radial direction is

treated in Fourier space with periodic boundary conditions.

Particle transport in an eITB discharge

A TCV discharge for which an electron internal transport barrier was obtained [5] is studied

with the local version of the GENE code. The local parameters are considered in the inner

part of the transport barrier (r/a = 0.4), i.e. at the position where the safety factor and shear

are respectively q = 3.2 and ŝ = −0.5. The simulations are carried out with 3 species, H+,

C6+, e−, with densities such that Ze f f = 3, and assuming Te/Ti = 3. The electron temperature

normalized gradient is kept fixed at R/LTe = 15.1 and one considers two different cases with

density gradients R/Ln = 2.5 and R/Ln = 5.1 for which a scan in the ion temperature gradients

R/LTi
is performed. Note that in these simulations one assumes R/LTi for H+ and C+ to be

equal and R/Ln to have the same value for all three species. For these parameters the nonlinear

heat flux typically peaks around kyρi = 0.3, which motivates for a linear study at this value

of kyρi, in view of identifying the underlying driving instabilities. Fig. 1.a shows the growth

rates and real frequencies of the two most unstable modes at kyρi = 0.3 for several values

of R/LTi. Considering first the case R/Ln = 5.1, the dominant mode is TEM like with a real
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Figure 1: Results for case R/Ln = 2.5 (solid) and R/Ln = 5.1 (dashed) - (a) Linear growth rates and

frequencies of the two most unstable modes - (b) Ratio ∑i Qi/Qe of ion and electron heat flux obtained

linearly considering the most unstable mode (circle), and nonlinearly (cross) - (c) Nonlinear particle

fluxes for H+ (cross), C6+ (circle) and e− (square) - (d) Electron particle flux spectra for R/LTi = 15.1

frequency in the electron diamagnetic direction (negative) for all considered values of R/LTi.

On the contrary, for the case R/Ln = 2.5, a transition between ITG and TEM dominant mode

is observed at R/LTi ∼ 11. Such transition is further confirmed in Fig. 1.b, where the ratio

∑i Qi/Qe for the most unstable mode is shown. Nonlinear results presented in Fig. 1.c show

that in the case R/Ln = 2.5 where an ITG-TEM transition is observed, it is possible to find a

value of R/LTi ∼ 14 such that the electron particle flux is zero, similar to results discussed in

Refs [6, 7]. Such cancellation results from inward and outward flux contributions at different

values of kyρi, as is clearly illustrated in Fig. 1.d. One finally notes that, for this particular value

of R/LTi, the two ion species have non zero particle fluxes in opposite directions, with a total

contribution ensuring ambipolarity.

Global results comparison

The global version of the GENE code is first compared with the linear PIC code GYGLES

[8], for cyclone like parameters [9], i.e. considering only electrostatic fluctuations with adiabatic

electrons. Both codes consider a circular concentric analytic model for the equilibrium with a
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Figure 2: Comparison of linear growth rates (a) and real frequencies (b) as a function of kyρs obtained

with the global version of GENE and with GYGLES.
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Figure 3: (a) Benchmark of the nonlinear ion heat diffusivity χi as a function of time for cyclone like

parameters - (b) Nonlinear (R/LT ,χi) trace for parameters presented in Ref. [11].

safety factor profile q(r) = 0.85+2.4(r/a)2. The temperature and density gradient profiles are

peaked with maximum values R/LTi(x0) = 6.96 and R/Ln(x0) = 2.2. The resulting growth rates

and real frequencies are plotted in Fig. 2 showing a very good agreement. Using similar param-

eters, nonlinear results are compared with the ORB5 code [10]. In Fig. 3.a time evolution of the

heat diffusivity is shown for nonlinear relaxation simulations where the same initial conditions

have been set in the two codes. The time traces of the first burst are essentially identical in both

simulations, and remain very close till the end of the run at tcs/R = 100. Finally, see Fig. 3.b,

the global version of GENE recovers well nonlinear relaxation traces in the (R/LT ,χi) plane

published in Ref. [11], where flat gradient profiles were used.
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