45 research outputs found

    Spores of Clostridium difficile Clinical Isolates Display a Diverse Germination Response to Bile Salts

    Get PDF
    Clostridium difficile spores play a pivotal role in the transmission of infectious diarrhoea, but in order to cause disease spores must complete germination and return to vegetative cell growth. While the mechanisms of spore germination are well understood in Bacillus, knowledge of C. difficile germination remains limited. Previous studies have shown that bile salts and amino acids play an important role in regulating the germination response of C. difficile spores. Taurocholate, in combination with glycine, can stimulate germination, whereas chenodeoxycholate has been shown to inhibit spore germination in a C. difficile clinical isolate. Our recent studies of C. difficile sporulation characteristics have since pointed to substantial diversity among different clinical isolates. Consequently, in this study we investigated how the germination characteristics of different C. difficile isolates vary in response to bile salts. By analysing 29 isolates, including 16 belonging to the BI/NAP1/027 type, we show that considerable diversity exists in both the rate and extent of C. difficile germination in response to rich medium containing both taurocholate and glycine. Strikingly, we also show that although a potent inhibitor of germination for some isolates, chenodeoxycholate does not inhibit the germination, or outgrowth, of all C. difficile strains. Finally, we provide evidence that components of rich media may induce the germination of C. difficile spores, even in the absence of taurocholate. Taken together, these data suggest that the mechanisms of C. difficile spore germination in response to bile salts are complex and require further study. Furthermore, we stress the importance of studying multiple isolates in the future when analysing the nutrients or chemicals that either stimulate or inhibit C. difficile spore germination

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of JET results

    No full text

    Overview of the JET results with the ITER-like wall

    No full text
    Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential

    Overview of the JET results

    Get PDF
    Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in confinement and pedestal behaviour before and after the ITER-like wall installation have been better characterized towards the development of high fusion yield scenarios in DT. Post-mortem analyses of the plasma-facing components have confirmed the previously reported low fuel retention obtained by gas balance and shown that the pattern of deposition within the divertor has changed significantly with respect to the JET carbon wall campaigns due to the absence of thermally activated chemical erosion of beryllium in contrast to carbon. Transport to remote areas is almost absent and two orders of magnitude less material is found in the divertor

    Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter

    No full text
    Beryllium limiter marker tiles were exposed to plasma in the Joint European Torus to diagnose the erosion of main chamber wall materials. A limiter marker tile consists of a beryllium coating layer (7-9 mu m) on the top of bulk beryllium, with a nickel interlayer (2-3 mu m) between them. The thickness variation of the beryllium coating layer, after exposure to plasma, could indicate the erosion measured by ion beam analysis with backscattering spectrometry. However, interpretations from broad beam backscattering spectra were limited by the non-uniform surface structures. Therefore, micro-ion beam analysis (mu-IBA) with 3 MeV proton beam for Elastic back scattering spectrometry (EBS) and PIXE was used to scan samples. The spot size was in the range of 3-10 mu m. Scanned areas were analysed with scanning electron microscopy (SEM) as well. Combining results from mu-IBA and SEM, we obtained local spectra from carefully chosen areas on which the surface structures were relatively uniform. Local spectra suggested that the scanned area (approximate to 600 mu m x 1200 mu m) contained regions with serious erosion with only 2-3 mu m coating beryllium left, regions with intact marker tile, and droplets with 90% beryllium. The nonuniform erosion, droplets mainly formed by beryllium, and the possible mixture of beryllium and nickel were the major reasons that confused interpretation from broad beam EBS

    Long-lived coupled peeling ballooning modes preceding ELMs on JET

    No full text
    In some JET discharges, type-I edge localised modes (ELMs) are preceded by a class of low-frequency oscillations (Perez et al 2004 Nucl. Fusion 44 609). While in many cases the ELM is triggered during the growth phase of this oscillation, it is also observed that this type of oscillation can saturate and last for several tens of ms until an ELM occurs. In order to identify the nature of these modes, a wide pre-ELM oscillation database, including detailed pedestal profile information, has been assembled and analysed in terms of MHD stability parameters. The existence domain of these pre-ELM oscillations and the statistical distribution of toroidal mode numbers (n) up to n = 16 have been mapped in ballooning alpha (alpha(ball)) and either edge current density (J(edge)) or pedestal collisionality (nu(ee,ped)*) coordinates and compared to linear MHD stability predictions. The pre-ELM oscillations are reliably observed when the J/alpha ratio is high enough for the pedestal to access the coupled peeling-ballooning (PB) domain (aka stability nose). Conversely, when the pedestal is found to be in or near the high-n ballooning domain (which is at low J/alpha ratio), ELMs are usually triggered promptly, i.e. with no detectable pre-ELM oscillations, or with pre-ELM oscillations only observable on ECE whose n appears to be too high to be resolved by the magnetics. Individual discharges can sometimes exhibit a fairly wide range of pre-ELM mode numbers, but for a wider database, the statistical n-number domains are found to be well ordered along the J - alpha stability boundary and behave as expected from PB theory: the higher the J/alpha ratio, the lower the mode's measured n tends to be. Within the measurement uncertainties, the measured n is usually found to be compatible with the most unstable n predicted by the linear stability code MISHKA1. These results confirm the earlier hypothesis that these modes are coupled peeling-ballooning modes, and extend and generalise to higher-mode numbers the work by Huysmans et al (1998 Nucl. Fusion 38 179), who identified the lowest n modes as pure external kink modes. Since the destabilisation of PB modes is widely accepted to give rise to ELMs, the mode saturation and delayed ELM triggering that is sometimes observed is rather unexpected. Possibilities to reconcile the extended lifetime of these modes with current ELM models are briefly discussed, but will require further investigation

    Diagnostic of fast-ion energy spectra and densities in magnetized plasmas

    No full text
    The measurement of the energy spectra and densities of alpha-particles and other fast ions are part of the ITER measurement requirements, highlighting the importance of energy-resolved energetic-particle measurements for the mission of ITER. However, it has been found in recent years that the velocity-space interrogation regions of the foreseen energetic-particle diagnostics do not allow these measurements directly. We will demonstrate this for gamma-ray spectroscopy (GRS), collective Thomson scattering (CTS), neutron emission spectroscopy and fast-ion D-alpha spectroscopy by invoking energy and momentum conservation in each case, highlighting analogies and differences between the different diagnostic velocity-space sensitivities. Nevertheless, energy spectra and densities can be inferred by velocity-space tomography which we demonstrate using measurements at JET and ASDEX Upgrade. The measured energy spectra agree well with corresponding simulations. At ITER, alpha-particle energy spectra and densities can be inferred for energies larger than 1.7 MeV by velocity-space tomography based on GRS and CTS. Further, assuming isotropy of the alpha-particles in velocity space, their energy spectra and densities can be inferred by 1D inversion of spectral single-detector measurements down to about 300 keV by CTS. The alpha-particle density can also be found by fitting a model to the CTS measurements assuming the alpha-particle distribution to be an isotropic slowing-down distribution
    corecore