751 research outputs found

    Soren Kierkegaard\u27s Philosophy of Authentic Existence

    Get PDF
    This undergraduate honors thesis discusses the life and philosophical works of Soren Kierkegaard as it relates to the concept of authentic existence

    Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties

    Get PDF
    Systematic tailoring of nanocrystal architecture could provide unprecedented control over their electronic, photophysical, and charge transport properties for a variety of applications. However, at present, manipulation of the shape of perovskite nanocrystals is done mostly by trial-and-error-based experimental approaches. Here, we report systematic colloidal synthetic strategies to prepare methylammonium lead bromide quantum platelets and quantum cubes. In order to control the nucleation and growth processes of these nanocrystals, we appropriately manipulate the solvent system, surface ligand chemistry, and reaction temperature causing syntheses into anisotropic shapes. We demonstrate that both the presence of chlorinated solvent and a long chain aliphatic amine in the reaction mixture are crucial for the formation of ultrathin quantum platelets (∌2.5 nm in thickness), which is driven by mesoscale-assisted growth of spherical seed nanocrystals (∌1.6 nm in diameter) through attachment of monomers onto selective crystal facets. A combined surface and structural characterization, along with small-angle X-ray scattering analysis, confirm that the long hydrocarbon of the aliphatic amine is responsible for the well ordered hierarchical stacking of the quantum platelets of 3.5 nm separation. In contrast, the formation of ∌12 nm edge-length quantum cubes is a kinetically driven process in which a high flux of monomers is achieved by supplying thermal energy. The photoluminescence quantum yield of our quantum platelets (∌52%) is nearly 2-fold higher than quantum cubes. Moreover, the quantum platelets display a lower nonradiative rate constant than that found with quantum cubes, which suggests less surface trap states. Together, our research has the potential both to improve the design of synthetic methods for programmable control of shape and assembly and to provide insight into optoelectronic properties of these materials for solid-state device fabrication, e.g., light-emitting diodes, solar cells, and lasing materials

    Structural Changes of Alpha 1-Antitrypsin under Osmotic Pressure and in the Presence of Lipid Membranes

    Get PDF
    poster abstractAlpha 1-Antitrypsin (A1AT) is a glycoprotein that has been shown to have protective roles of lung cells against emphysema, a disease characterized by lung tissue destruction. Most known glycoproteins have been shown to play a role in cellular interactions but the exact role of the glycan chains is still under investigation. Previous electrophysiological measurements show that A1AT has a strong affinity to lipid bilayers perturbing the function of ion channels present in the membrane. We have performed contrastmatching small-angle neutron scattering (SANS) experiments to study the conformational changes of the glycosylated form of A1AT for different concentrations of the osmolyte poly(ethelene glycol) (PEG) and in the presence of two different lipid membranes: POPC and POPS. We also monitor the structural changes of the lipid vesicles in the presence of A1AT by SANS. Guinier fits were used as a first approximation to obtain the radius of gyration (Rg) of A1AT. Bragg peaks were used to study structural changes of lipid vesicles. We observed that the Rg of A1AT changes as a function of PEG concentration in solution and when in the presence of lipid vesicles. The deformations monitored through changes in A1AT’s Rg in the presence of lipid vesicles are compared to the deformations of the glycoprotein observed under osmotic pressure and to the structural changes observed in the lipid vesicles

    Food, home and health: the meanings of food amongst Bengali Women in London

    Get PDF
    Background This paper explores the nature of food and plants and their meanings in a British Bengali urban context. It focuses on the nature of plants and food in terms of their role in home making, transnational connections, generational change and concepts of health. Methods An ethnographic approach to the research was taken, specific methods included participant observation, focus group discussions and semi-structured interviews. Thirty women of Bengali origin were mostly composed of “mother” and “daughter” pairs. The mothers were over 45 years old and had migrated from Bangladesh as adults and their grown-up daughters grew up in the UK. Results Food and plants play an important role in the construction of home “here” (London) while continuing to connect people to home “there” (Sylhet). This role, however, changes and is re-defined across generations. Looking at perceptions of “healthy” and “unhealthy” food, particularly in the context of Bengali food, multiple views of what constitutes “healthy” food exist. However, there appeared to be little two-way dialogue about this concept between the research participants and health professionals. This seems to be based on “cultural” and power differences that need to be addressed for a meaningful dialogue to occur. Conclusion In summary, this paper argues that while food is critical to the familial spaces of home (both locally and globally), it is defined by a complex interplay of actors and wider meanings as illustrated by concepts of health and what constitutes Bengali food. Therefore, we call for greater dialogue between health professionals and those they interact with, to allow for an enhanced appreciation of the dynamic nature of food and plants and the diverse perceptions of the role that they play in promoting health

    Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels

    Get PDF
    Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble metal nanostructures is fundamentally important for various optoelectronic applications such as photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon functionalization of their surface with different para-substituted thiophenolate (X–Ph–S−) ligands. We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through the selective manipulation of electronic processes at the Au–thiolate interface. Interestingly, thiophenolates with electron withdrawing (donating) groups (X) produce λLSPR blue (red) shifts with broadening (narrowing) of localized surface plasmon resonance peak (λLSPR) line widths. Surprisingly, these experimental results are opposite to a straightforward application of the Drude model. Utilizing density functional theory calculations, we develop here a frontier molecular orbital approach of Au-thiophenolate interactions in the solid-state to delineate the observed spectral response. Importantly, all the spectroscopic properties are fully reversible by exchanging thiophenolates containing electron withdrawing groups with thiophenolates having electron donating groups, and vice versa. On the basis of the experimental data and calculations, we propose that the delocalization of electrons wave function controls the free carrier concentration of Au and thus the LSPR properties rather than simple electronic properties (inductive and/or resonance effects) of thiophenolates. This is further supported by the experimentally determined work functions, which are tunable over 1.9 eV in the X–Ph–S–passivated Au TNPs. We believe that our unexpected finding has great potential to guide in developing unique noble metal nanostructure–organic ligand hybrid nanoconjugates, which could allow us to bypass the complications associated with off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications

    B-cell anergy: from transgenic models to naturally occurring anergic B cells?

    Get PDF
    Anergy, a condition in which cells persist in the periphery but are unresponsive to antigen, is responsible for silencing many self-reactive B cells. Loss of anergy is known to contribute to the development of autoimmune diseases, including systemic lupus erythematosus and type 1 diabetes. Multiple transgenic mouse models have enabled the dissection of mechanisms that underlie anergy, and recently, anergic B cells have been identified in the periphery of wild-type mice. Heterogeneity of mechanistic concepts developed using model systems has complicated our understanding of anergy and its biological features. In this Review, we compare and contrast the salient features of anergic B cells with a view to developing unifying mechanistic hypotheses that explain their lifestyles

    The Semi-Chiral Quotient, Hyperkahler Manifolds and T-duality

    Full text link
    We study the construction of generalized Kahler manifolds, described purely in terms of N=(2,2) semichiral superfields, by a quotient using the semichiral vector multiplet. Despite the presence of a b-field in these models, we show that the quotient of a hyperkahler manifold is hyperkahler, as in the usual hyperkahler quotient. Thus, quotient manifolds with torsion cannot be constructed by this method. Nonetheless, this method does give a new description of hyperkahler manifolds in terms of two-dimensional N=(2,2) gauged non-linear sigma models involving semichiral superfields and the semichiral vector multiplet. We give two examples: Eguchi-Hanson and Taub-NUT. By T-duality, this gives new gauged linear sigma models describing the T-dual of Eguchi-Hanson and NS5-branes. We also clarify some aspects of T-duality relating these models to N=(4,4) models for chiral/twisted-chiral fields and comment briefly on more general quotients that can give rise to torsion and give an example.Comment: 31 page
    • 

    corecore