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Abstract:

Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble 

metal nanostructures is fundamentally important for various optoelectronic applications such as 

photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier 

concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon 

functionalization of their surface with different para-substituted thiophenolate (X-Ph-S-) ligands.  

We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through 

the selective manipulation of electronic processes at the Au-thiolate interface. Interestingly, 

thiophenolates with electron withdrawing(donating) groups (X) produce 𝝀LSPR blue(red) shifts 

with broadening(narrowing) of localized surface plasmon resonance peak (𝝀LSPR) linewidths. 

Surprisingly, these experimental results are opposite to a straightforward application of the 

Drude model. Utilizing density functional theory calculations, we develop here a frontier 

molecular orbital (MO) approach of Au-thiophenolate interactions in the solid-state to delineate 

the observed spectral response. Importantly, all the spectroscopic properties are fully reversible 

by exchanging thiophenolates containing electron withdrawing groups with thiophenolates 

having electron donating groups, and vice versa. Based on the experimental data and 

calculations, we propose that the delocalization of electrons wave function controls the free 

carrier concentration of Au and thus, the LSPR properties rather than simple electronic 

properties (inductive and/or resonance effects) of thiophenolates. This is further supported by 

the experimentally determined work functions, which are tunable over 1.9 eV in the X-Ph-S-

passivated Au TNPs. We believe that our unexpected finding has great potential to guide in 

developing unique noble metal nanostructure-organic ligand hybrid nanoconjugates, which 

could allow us to bypass the complications associated with off-resonance LSPR activation of 

noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications.
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Upon illumination of visible light onto noble metal nanostructures, the incident electric 

field triggers coherent oscillation of conduction electrons (“surface plasmon excitations”) of the 

nanostructures. This nanoscale optical phenomenon is known as localized surface plasmon 

resonance (LSPR).1, 2 Traditionally, LSPR properties are controlled by changing the size, shape, 

and local dielectric environment of the nanostructures.3-5 According to the Drude model (Eq. 1 

and 2), charging of a nanostructure will alter its free carrier concentrations - an increase 

(decrease) in electron density of the plasmonic nanostructure, the bulk plasmon frequency (ωp) 

is expected to increase (decrease), and therefore the wavelength (𝝀) to decrease (increase), 

which results in a blue (red)-shift of the LSPR peak (𝝀LSPR) position – should result in shifting of 

surface plasmon resonance frequency.6 Here, Ne is the density of free electrons in the metal, m 

is the effective mass of the electron and 0 is the dielectric function. Therefore, noble metal 

nanostructures can be considered as “plasmoelectronic materials”7 in which precise tuning of 

the 𝝀LSPR position is highly plausible by external electric fields when nanostructures are in 

contact with conductive surfaces or have light irradiation. 

      (1) 𝜔2
𝑝 =

𝑁𝑒 𝑒2

𝑚𝜖0

         (2)𝜔𝑝 ∝  
1
𝜆

Recently, Sheldon et al.8 experimentally demonstrated a reversible shift of 𝝀LSPR position of Ag 

nanostructures by changing the Ne in the metal through external electrostatic fields, a 

plasmoelectric effect. Hoener et al. reported the LSPR response of anisotropic Au 

nanostructures due to capacitive charging.9 Additionally, Moskovits and coworkers showed 

photo-induced shifts of the 𝝀LSPR positions of Au nanostructures contacting with a thin layer of 

conducting metal-oxides.10 All these studies validate the Drude model as described in Eq. 1 and 

2. In this context, one could envision plasmoelectric effects upon attachment of organic ligands 

to nanostructures that are capable of altering their free carrier concentrations 

positively/negatively by withdrawing/injecting charges through inductive or resonance effects. 

Importantly, the 𝝀LSPR position is expected to be reversibly cyclable upon replacing charge 

donating ligands with charge withdrawing ligands and vice versa. To our knowledge, such 

ligand-controlled, fully reversible tuning of plasmoelectric effects in metal nanostructures has yet 

to be demonstrated but is important for the preparation of novel, inorganic-organic hybrid 

nanostructures for optoelectronic applications.

Page 3 of 23

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

In this letter, we show how covalently attached, para-substituted thiophenolate ligands (X-Ph-S-; 

X = -NH2, -OCH3, -CH3, -H, -Cl, -Br, -NO2, and –CF3) that varying their electron 

donation/withdrawal ability alter the TNP LSPR properties (“a plasmoelectric effect”) of 

chemically synthesized gold triangular nanoprisms (Au TNPs) in solid-state and how the energy 

level alignment between TNPs and ligand molecular orbitals (MOs) of the X-Ph-SH series 

control the Ne of Au TNPs up to 12%, for the first time. We observe fully reversible tuning of the 

𝝀LSPR position of Au TNPs for at least five cycles upon passivation with X-Ph-S- ligands. 

Surprisingly, X-Ph-S- ligands containing strong electron withdrawing -CF3 and strong electron 

donating –NH2 groups produce blue- and red-shifts of the 𝝀LSPR position, respectively, with 

respect to thiophenolate (H-Ph-S-). Our experimental results and proposed MO theory of the 

TNP-S-Ph-X system show that the opposite LSPR response in comparison to the Drude model 

(Eqs. 1 and 2), is not controlled by the change in local dielectric environment of the Au TNPs or 

variation in the number of X-Ph-S-/TNP (X-Ph-S-/nm2). It is, perhaps, delocalization of electron 

wave functions either from or to hybrid orbitals that are formed between electronic states of Au 

TNPs and MOs of thiophenol. Delocalization occurs because of the appropriate alignment of 

MO energy levels, alters the overall free carrier concentration of the TNP and consequently the 

LSPR properties. Finally, between electron donating and withdrawing groups on X-Ph-S-, we 

determine an ~1.9 eV change in the work function () of Au TNPs which supports the proposed 

electron wave functions delocalization mechanism. Together, such an unprecedentedly large 

range of ligand-controlled optical spectral tunability of noble metal nanostructures in the visible 

region of the solar spectrum should be beneficial for development of unique electronic materials 

for plasmon-driven solar cells11-13 and photocatalytic14, 15 applications, while circumventing the 

difficulties of off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals.8, 

16

We selected Au TNPs to investigate ligand-controlled reversible tunability of plasmoelectric 

effects in noble metal nanostructures because their atomically flat surface should allow the 

formation of a well-controlled self-assembled monolayer of X-Ph-S- ligands. Moreover, the TNP-

S-Ph-X system has  several important nanoscale structural properties that are found such as (1) 

strong electromagnetic (EM) field enhancement at their sharp tips and edges that should induce 

a large LSPR response,17-19 (2) sharp structural features of TNPs that are expected to facilitate 

strong Au-S-Ph-X interactions at the metal-ligand interface,20 and (3) high stability of the Au-S 

bond due to soft-soft covalent interactions. These properties allow spectroscopic 

characterization that is critical for device applications in the solid-state.19, 21, 22 As shown in 
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Figure 1A, we investigated the LSPR response of Au TNPs by attaching them onto a silanized 

glass substrate followed by ligand exchange reactions with X-Ph-S-; X= -NH2, -OCH3, -CH3, -H, 

-Cl, -Br, -NO2, and –CF3 in the solid-state. Figure 1B and Figure S1 represent atomic force 

(AFM) and scanning electron (SEM) microscopy images of trioctylamine (TOA)-passivated, Au 

TNPs with an average 42 nm edge-length and 8.5 nm height that display an LSPR dipole peak 

(𝝀LSPR) at 775 nm in air (Figure S2). 

Ligand exchange by thiophenol produces fully X-Ph-S- ligand-passivated TNPs as confirmed by 

surface-enhanced Raman scattering (SERS) measurements in which disappearance of the C-N 

Raman stretch at 1035 cm-1 and appearance of the C-S and aromatic C=C stretches at 1083 

and 1573 cm-1, respectively, are observed (Figure S3). As illustrated in Figure 1C and D, an 

~24 nm red-shift in the 𝝀LSPR of TNPs is observed that could be due to the change in the local 

dielectric environment around the TNPs. Passivation of Au TNPs with X-Ph-S- ligands 

containing strong electron withdrawing (X = -CF3) and strong electron donating (X = –NH2) 

groups produces ~20 and ~25 nm blue and red shifts of the 𝝀LSPR position, respectively, with 

respect to H-Ph-S- (see Figure 1C). Figure 1D and Figure S4A show the observed LSPR (X-

Ph-S-passivated  – TOA-passivated) upon ligand exchange of TOA-passivated Au TNPs with X-Ph-SH. 

Interestingly, the magnitude of the LSPR red and blue shifts follows the increasing order of 

electron donation (-CH3> -OCH3> -NH2) and electron withdrawal (-Cl> -Br> -NO2> -CF3) abilities 

of the para-substitutions, respectively. The change in the 𝝀LSPR position (�LSPR in nm or meV) 

from fully TOA-passivated TNPs upon ligand exchange with X-Ph-SH for the different 

substitutions (X) does not follow the refractive index trend (see Figure 1E and Figure S4B). If 

so one would expect nearly identical 𝝀LSPR values for -Br and -NH2 substitutions, whereas -CH3 

and -OCH3 substituted X-Ph-S- ligands should provide lesser shifts than either Cl or Br 

substitutions. As shown in Table S1, the difference in refractive indices between ligands is 

relatively small (~ 0.1) but it is still significant enough to observe large LSPR shifts with the 

appropriate trend in which LSPR peak should red-shift with an increase in refractive index for 

~42 nm edge-length and 8.5 nm thick Au TNPs.23 However, we have not taken into account that 

the refractive index of surface passivating ligand would be different when they are attached onto 

the surface of Au TNPs with a particular orientation than the ensemble measurements in the 

free state with all molecular orientations. It is possible that the trend of refractive index data 

tabulated in Table S1 would remain same. Nevertheless, in a very simplistic LSPR 

phenomenon, the trend in 𝝀LSPR values with respect to the electronic character of para-

substitutions is somewhat surprising because according to the Drude model ωp is expected to 
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increase (decrease) [𝝀LSPR blue shift (red) shift] for X-Ph-S- ligands containing the electron-

donating (-withdrawing) groups [e.g., X = -NH2(-CF3], as described by Eq. 1 and 2 (i.e., the 

Drude model).  

Beside refractive index-related effects, as described above, two other factors, i.e., the variation 

in the number of X-Ph-S- ligands attached per TNP (surface coverage) and the dipole moment 

of TNP-attached ligands would also influence the LSPR properties including the 𝝀LSPR position of 

our metallic nanostructures. We hypothesize that the attachment of X-Ph-S- ligands onto Au 

TNPs produces unexpected metal-ligand electronic binding properties because of the particular 

aspects of orbital alignment and overlap allowing delocalization of plasmonic electron wave 

functions, thus resulting in the changes in the Ne of TNPs and the unexpected 𝝀LSPR response, 

see Figure 2 (vide infra). Before we present our proposed MO theory in order to explain the 

usual spectral response of X-Ph-S-passivated Au TNPs, we must acknowledge that the 

electrostatic interaction between TNPs and the oriented dipole moment of passivating ligands 

could alter the surface density of conduction electron that results in variation in the localized 

dipole moment of TNPs, and thus their LSPR responses. In order to precisely determine the role 

of ligands’ dipole moments on the LSPR properties of TNPs, it is critical to determine the 

different structural models such as ligand-ligand and inter-TNPs interactions because these 

interactions could influence the overall dipole moment of the ligand-passivated Au TNPs. 

Quantitative determination of these models require sophisticated theoretical calculations that 

are beyond the scope of this letter. Later part in this letter, we discussed about the surface 

coverage and the resulting LSPR properties of X-Ph-S-passivated Au TNPs.  
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Figure 1. Structural and optical characterizations of different X-Ph-S-passivated Au TNPs 
in the solid-state. (A) Starting with TOA-passivated Au TNPs, TOA can be replaced by 
different thiophenolate ligands containing electron donating (EDG) and withdrawing (EWG) 
groups. An oscillating electric field then interacts differently with the TNP. Note that, the metal 
with the EWG has a higher charge density and conversely with the EDG, it is lower. The image 
is not to scale. (B) AFM image of the TOA-passivated Au TNPs. (C) Experimentally determined 
LSPR spectra of para-substituted thiophenolate (X-Ph-S-)-passivated Au TNPs: TOA- (gray-774 
nm), and X-Ph-S- passivated: X = CF3 (orange-779 nm ), X = NO2 (black-784 nm), X = Br (red-
791 nm), X = Cl ( wine-793 nm), X = H (green dotted line-798 nm), X = CH3 (Purple-805 nm), X 
= OCH3 (pink-820 nm),  X = NH2 (Blue-824 nm). (D) Summary of the observed LSPR (X-Ph-S-

passivated – TOA-passivated Au TNPs) upon passivation of Au TNPs with X-Ph-S- through the ligand 
exchange chemistry. Red arrow indicates the LSPR shifts after passivation with various electron 
donating groups (EDGs) and black arrow indicates the LSPR shifts after passivation with 
electron withdrawing groups (EWGs) compared to when Au TNPs were functionalized with H-
Ph-S-. (E) Figure summarizes the LSPR changes upon passivation of Au TNPs with X-Ph-S- 
vs. refractive index of X-Ph-S- ligands. 

As reported in the literature for Au nanostructures24 and according to MO theory,25 chemical 

attachment or adsorption of organic molecules creates new hybrid orbitals. To address the 

unexpected LSPR shifts we took advantage of the MO theory because it has a unique potential 

to appropriately describe the metal-ligand interaction in solid-state from a thermodynamic view 

point. Furthermore, MO theory can explain the change in work function () of metal upon 

covalent bond formation with ligands. We predict that in the case of X-Ph-S- ligands containing 

electron-donating groups (e.g., -NH2, -CH3, etc.) completely empty hybrid bonding (HOMO’) and 

anti-bonding (LUMO’) orbitals are formed when two empty orbitals interact, here considering Au 

has continuum of energetic states (LUMOs) and the ligand contains LUMOs (Figure 2A).25 

Interactions between two empty orbitals would be discounted, however, moving electron 

densities from the Au Fermi level to empty HOMO’ is considered to be stabilizing and attractive 

and that would together result in Au-S-Ph-X bonding. When illuminated with visible light during 

the UV-visible spectroscopic characterization, the LSPR active low energy electrons (“plasmonic 

electrons”) near the Fermi level are generated. There are two possibilities involving these 
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electrons: (1) Wave functions of plasmonic electrons could delocalize into empty HOMO’, which 

reside below the Au Fermi level (EF, -5.5 eV);26 (2) Plasmonic electrons are being transferred to 

empty HOMO’. In our system we believe that the plasmonic electron wave functions are 

delocalizing, because if the electrons are transferred from Au-to-HOMO’ then excess positive 

charge (residual holes) will build up that can slowly destroy the TNPs and permanently change 

the LSPR properties from conducting the measurements in N2 filled cuvette where no potential 

hole scavengers were available. Delocalization of electron wave functions decreases the overall 

Ne of Au TNPs, which supports the red shift of the 𝝀LSPR position. In contrast, as shown in Figure 

2B, an interaction between X-Ph-S- ligands (containing electron-withdrawing groups e.g., -NO2, 

-CF3, etc.) and Au is a four-electron and two-orbital system in which the LUMO’ rises above the 

Au Fermi energy. Four electrons will occupy HOMO’ and LUMO’ making the interaction 

destabilizing and repulsive. However, extension of LUMO’ electron wave functions to the Au 

Fermi level stabilizes the system and increases the Ne in TNPs. This electronic process leads to 

a blue shift of the 𝝀LSPR  position. We performed density functional theory (DFT) calculations on 

NH2-Ph-S-Au using a simple Au-thiolate “staple” structures [Au(X-Ph-S-)2]27-29 to find the MO 

energy levels of the of HOMO’ and LUMO’ and then found to be -5.850 and -3.158 eV, 

respectively. Similarly, DFT calculations provided the HOMO’ and LUMO’ of NO2-Ph-S-Au at -

6.911 and -4.005 eV, respectively. Considering an 8 nm thick Au TNP as a plasmonic slab, the 

energy of the plasmonic electron would be -3.28 eV.26 Under this calculation, delocalization of 

plasmonic electron wave function into the HOMO’ orbital is thermodynamically favorable for 

NH2-Ph-S- passivation (Figure 2A). Also, in order to stabilize the destabilize hybrid MOs, 

delocalization of the electron wave function from LUMO’ to Au would be energetically favorable 

for the NO2-Ph-S-Au system (Figure 2B). This electronic process would lead to an increase in 

Au free carrier concentrations. Together, the slab theory and DFT calculations support the 

proposed MO diagram. Newly formed hybrid MOs contain the properties of both metal and 

ligands. The supporting Information file contains further information concerning the DFT 

calculations. It is also important to mention that in the formation of hybrid orbitals (HOMOs’ and 

LUMOs’) from mixing of individual orbitals of Au and X-Ph-S-, one must consider that the metal-

ligand interactions depend upon the distance between the energy levels and their overlap and 

symmetry, such that different ligands will interact differently with the metal. The interactions 

depend on the appropriate energy level alignment between the MOs of metal and ligand and 

their coupling constants. Therefore, the better the energy level alignment and is the higher the 

coupling. The probability of the formation of a larger number of hybrid MOs is also higher which 

allows facile delocalization of plasmonic electron wave functions. Together, this electronic 
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process strongly modulates the LSPR properties of ligand-passivated Au TNPs. Perhaps, 

multiple HOMOs and LUMOs could interact but for simplicity, here we only discuss only one set 

of MO interactions.

Figure 2. Proposed metal-ligand orbital binding scheme between Au TNP and para-
substituted, thiophenolate interfaces emphasizing the electron contributions to the Fermi 
level. (A) With the ligand LUMO orbital, the para-substituted thiophenolate with an electron 

donating group provides a better energy match to an unoccupied metal orbital resulting in a 

hybrid metal-ligand MO below the Fermi level and thus allowing delocalization of plasmonic 

electron wave functions from the metal to stabilize the destabilized hybrid MOs. (B) With the 

ligand HOMO orbital, the substituted thiophenolate with an electron withdrawing group provides 

a better energy match to an occupied metal orbital resulting in a hybrid metal-ligand MO above 

the Fermi level and thus allowing delocalization of antibonding electron wave functions from the 

hybrid LUMO’ to metal to stabilize the system and increases the Ne in TNPs. Images are not to 

scale.

In order to support the proposed electron wave function delocalization-controlled 

modulation of the LSPR properties of Au TNPs, we carefully examined UV-visible extinction 

spectra of all the X-Ph-S-passivated TNPs. Figure 3A illustrates the relationship between full-

width at half maxima (FWHM) and various para-substitutions in which NH2-Ph-S- and CF3-Ph-S-

passivated Au TNPs show an ~8% decrease and 23% increase in the FWHM of the extinction 

spectra, respectively, in comparison to the FWHM of H-Ph-S-passivated Au TNPs. The values 
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in eV for Figure 3A are presented in Figure S5. Our experimental spectral linewidth data are in 

agreement with literature suggesting that an increase in Ne of a nanostructure leads to an 

increase in damping of the oscillation of the conduction electrons.9, 30 This electronic 

phenomenon is responsible for the broadening of the LSPR spectrum.30 As shown in Figure 3B, 

we calculated Ne of Au TNPs upon passivation with X-Ph-S- utilizing Eqs. 3 and 4, as described 

in the literature.31 Clearly NH2-Ph-S- and CF3-Ph-S-passivated Au TNPs show an ~6.2% 

decrease and 5.2% increase in Ne, respectively, as compared to the Ne of H-Ph-S-passivated 

Au TNPs. Importantly, an 8 nm thick Au TNP as a plasmonic slab is capable of generating ~105 

plasmonic electrons under illumination of incident light perpendicular to the TNP surface.26 

Therefore, the change in electron density upon surface ligand passivation is in good agreement. 

We do not fully understand the reason underlying the relatively large change in FWHM of the 

extinction spectrum of CF3-Ph-S-passivated Au TNPs, which provides a smaller change in Ne 

compared to NH2-Ph-S-passivation, because one would expect that the larger the Ne change, 

the larger FWHM value. 

          (3)𝜔𝑠𝑝 =  
𝜔2

𝑝

1 + 2𝜀𝑚
― 𝛾2

Here sp is the surface plasmon frequency, and m is the dielectric constant of plasmonic 

materials. The electrons of the metal oscillate due to the incident electromagnetic field, and the 

motion is collision damped with a bulk collision frequency . Metals have free electrons in their 

conduction band, therefore large frequencies in the visible and near visible region lead to 

negligible damping frequency, and this approximation leads to modification of the Drude model 

where damped oscillator frequency (Eq. 3) can be rewritten as Eq. 4. We obtained the sp value 

for different X-Ph-S-passivated Au TNPs utilizing the LSPR peak maxima as shown in the UV-

visible extinction spectra (Figure 1C).

(4)𝜔𝑠𝑝 =  
𝜔2

𝑝

1 + 2𝜀𝑚
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It is also important to note that in the Ne calculations, we considered 𝝀LSPR as induced only by 

nanostructure plasmoelectric effects and not due to the changes in the local refractive index by 

individual X-Ph-S- ligands and/or the induced dipole of the metal-ligand system. Including 

individual components to fully quantify both Ne, dipole moment and refractive index effects on 

𝝀LSPR values of Au TNPs upon surface modification with various X-Ph-S- ligands require 

sophisticated theoretical calculations, which are beyond our expertise. We should also mention 

that the change in FWHM of metallic nanostructures due to charging and discharging is 

somewhat controversial. During the preparation of our manuscript, Lee et al.20 reported the 

chemical interface damping (CID) phenomenon16, 30, 32 – direct energetic electron transfer from 

plasmonic metals to their surface-bound, strongly interacting passivating ligands that causes 

damping in a homogenous LSPR linewidth - in thiolate ligand-passivated gold bipyramids. Here 

the authors observed a weak FWHM change of ~20 and ~15 meV for NO2-Ph-S- (electron 

withdrawing) and NH2-Ph-S- (electron donating), respectively, that is also opposite to the Drude 

model. An ~20-fold higher FWHM value is observed for Au TNP-passivated with NH2-Ph-S- in 

comparison to work reported for gold bipyramids for the identical ligand. Two possible reasons 

could lead to such an unprecedentedly large FHWM value observed in our system: (1) 

Atomically flat surfaces of Au TNPs should allow the formation of a better self-assembled 

monolayer of X-Ph-S- as compared to bipyramids. Therefore, more hybrid MOs are expected to 

form that would lead to a better delocalization of the electron wave function. (2) The LSPR 

characterizations of X-Ph-S-passivated bipyramids were conducted at a single nanoparticle 

level that resulted in an inherently narrow LSPR peak. In contrast, we characterized our LSPR 

responses through ensemble measurements, which always provide broad LSPR peak and high 

FWHM value due to heterogeneity of Au TNP size. We are actively investigating the LSPR 

properties of different X-Ph-S-passivated Au TNPs at a single nanoparticle level. Nevertheless, 

the literature work lacks a proper ligand reference (e.g., H-Ph-S-) to fully rationalize the CID 

effect along with having a very limited selection of X-Ph-S- ligands. Moreover, CID should 

induce excess positive charge (“hot-hole”) accumulation within the occupied states of a noble 

metal, and without the use of hole capturing species in a solid-state optical measurement, 

accumulation of positive charges would eventually destroy the metal-sulfur bonds during 

prolong light exposure and long experimental measurements. Below we show that the 𝝀LSPR is 

fully reversible by exchanging NO2-Ph-S- with NH2-Ph-S- passivation and vice versa, and thus 

the CID phenomenon is very unlikely to have occurred under our experimental conditions. 

Taken together, the experimental data presented herein is a simplified approximation of the 
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Drude model, which suggests the broadening of the spectral linewidth in metal nanostructures is 

expected to occur with an increasing Ne. 

Finally, we experimentally measured the  of X-Ph-S- ligand-passivated Au TNPs using ultra-

violet photoelectron spectroscopy (UPS) to further examine and support our electron wave 

function delocalization mechanism. Figure 3C provides the UPS spectra of Au when TNPs were 

functionalized with various X-Ph-S- ligands. Additional UV-photoelectron spectra are provided in 

the Supporting Information (see Figure S6). The secondary electron cutoff shifts gradually to 

lower binding energy with electron donating X-Ph-S- ligands with respect to H-Ph-S-, while an 

opposite trend is observed for X-Ph-S- ligands with electron withdrawing groups.  We observe 

an increase in the  (Fermi level of Au moves towards more negative energy with respect to 

vacuum) for NH2-Ph-S-passivated Au TNPs which suggests decreasing Ne in TNPs, see Figure 

3D. Contrastly, NO2-Ph-S- causes a decrease in the  of Au indicating an increase in Ne. 

Ligand-induced changes in  are reported in the literature for semiconductor PbS nanocrystals 

and planar metallic (Au and Ag) substrates by utilizing the UPS technique.33-35 Particularly, 

Beard et al.35 showed that the dipole moment of organic ligands could modulate the  of PbS 

nanocrystals. Although we did not take the ligand dipole moment in to consideration when 

determined the , but to our knowledge, we show for the first time a large change in  (1.9 eV) 

for plasmonic nanostructures because of the variation in their surface passivating ligands. Our 

UPS data are in agreement with the literature demonstrating changes in redox potential36 of 

ultrasmall Au nanocrystals upon functionalization with X-Ph-S- ligands. Taken together, under 

our experimental conditions the changes in Ne support our proposed model (Figure 2) that X-

Ph-S- ligands with the capability of donating electrons to metal nanostructures can reduce the 

Ne and increase the  of a plasmonic nanostructures under our experimental conditions. 
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Figure 3. Quantification of ligand-controlled electronic parameters of Au TNPs. (A) 
Changes in the full width half maxima of the LSPR peak measured upon passivation of Au 

TNPs with different X-Ph-S- ligands. (B) Summary of the calculated Ne changes upon 

(A) (B)

(C)
(D)
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passivation of TNPs with X-Ph-S- ligands. Upon passivation with CF3-Ph-S-, Ne increases 5.2%, 

and NH2-Ph-S- passivation leads to a decrease in Ne of 6.2% in comparison to the Ne of H-Ph-

S-passivated Au TNPs. (C) Secondary electron cut-off region of UPS spectra used to determine 

the work function () of X-Ph-S-passivated Au TNPs: -NH2 (blue curve), -OCH3 (pink curve), -

CH3 (purple curve), -H (green curve), -Cl (wine curve), - Br (red curve), and -NO2 (black curve). 

(D) Calculated  of Au TNPs as a function of electronic properties of surface passivating 

ligands.    

 Figure 4A-C, and Figures S7 and 8 show the reversible tuning of the 𝝀LSPR and FWHM of Au 

TNPs upon passivation with different X-Ph-S- ligands. Exchanging H-Ph-S- by NH2-Ph-S- 

provides a 𝝀LSPR of +26 nm (red-shift), and then a 𝝀LSPR of -40 nm (blue-shift) is observed when 

NH2-Ph-S- was replaced by NO2-Ph-S- on the surface of Au TNPs. Finally, a 𝝀LSPR of +14 nm 

(red-shift) is detected upon exchanging NO2-Ph-S- for H-Ph-S-. The exchange reactions have 

been performed up to five cycles without detecting any noticeable differences in the overall 

𝝀LSPR values. Fully reversible 𝝀LSPR shifts are also achieved by exchanging H-Ph-S- with NO2-

Ph-S- followed by NH2-Ph-S- (see Figure S9). In parallel, ligand exchange reactions produce 

reversible changes in the FWHM values, as shown in Figure 4C. The FWHM values in eV for 

Figure 4C is shown in Figure S10. Again, it is found that the Drude model does not follow the 

trends in 𝝀LSPR and FWHM values during reversible ligand exchange in our system. It is 

important to mention that we conducted SERS measurements utilizing the strong EM-field 

enhancement property of our chemically synthesized Au TNPs during the exchange reaction to 

confirm the complete removal of bound ligands by exchange ligands.37-40 As illustrated in Figure 
5A, the SERS intensity of the C-S stretch at 1083 cm-1 remains present in all the samples during 

the exchange reactions. Importantly, both the C-S and aromatic C=C (1573 cm-1) stretches are 

constant in intensity throughout the exchange (see Figure 5B). This is an expected result 

because exchanging H-Ph-S- by NH2-Ph-S-, and then attaching NO2-Ph-S- by NH2-Ph-S- 

exchange should not change the overall density of surface passivating ligands, the number of 

C-S and aromatic C=C bonds, and thus the SERS intensities. Furthermore, we observe 

disappearance of N-H stretch at 1390 cm-1 and appearance of N-O stretch at 1340 cm-1 when 

NH2-Ph-S- is replaced on the surface of TNPs by NO2-Ph-S-. Additional SERS spectra are 

provided in the Supporting Information (see Figure S11 and 12). We should mention that a 24h 

exchange reaction was sufficient to replace TNP surface-bound ligands with new ligands in 

order to achieve a stable 𝝀LSPR position and SERS intensity (see Figure 5B), however we did not 

calculate the coverage through an adsorption isotherm. Although, reversible tuning of the 𝝀LSPR 
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of metal nanostructures through applied electrochemical potential has been reported in the 

literature,8 to the best of our knowledge, this work demonstrates for the first time reversible 

modulation of the 𝝀LSPR of metal nanostructures in the solid-state by controlling the electronic 

properties of organic ligands. Depending on the chemical nature of the para-substitution, we 

hypothesize that the sequential ligand exchange with X-Ph-SH reestablishes HOMOs’ and 

LUMOs’ that allow electron wave functions delocalization from Au TNPs to passivating ligands 

and vice versa. Our  calculations also support this hypothesis. The reversibility of 𝝀LSPR tuning 

also suggests that no charge transfer has taken place between TNPs and X-Ph-S-, because 

under such condition Au TNPs would accumulate excess electric change. Excess charge would 

potentially destroy the TNPs, and thus the 𝝀LSPR position and FWHM would not be fully reversible 

as many cycles as we observed under our experimental conditions.
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Figure 4. Ligand-controlled reversible modulation of LSPR properties of Au TNPs. (A) 
Schematic representation showing reversible ligand exchange reactions with various X-Ph-S- 

ligands. (B) Position of the 𝝀LSPR after passivating the surface of TNPs with H-Ph-S- (black 

squares, 𝝀LSPR = ~796 nm) and then after H-Ph-S- was exchanged for NH2-Ph-S- (red squares, 

𝝀LSPR = ~828 nm), which was next replaced by NO2-Ph-S- (blue squares, 𝝀LSPR = ~782 nm). 

Representative UV-visible extinction spectra are provided in the supporting Information. 

Reversible tuning of 𝝀LSPR position is carried out for five successive cycles. (C) Average FWHM 

value of the dipole peak of Au TNPs during the sequential ligand exchange with the three 

different-type of X-Ph-S- ligands.   

(A)

(B) (C)
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Figure 5. SERS-based Monitoring of Sequential Exchange Reactions of Au TNPs with X-
Ph-S- Ligands. (A) SERS spectrum of H-Ph-S-passivated Au TNPs (a), after exchanging H-Ph-

S- with NH2-Ph-S- ligands (b), which were next replaced by NO2-Ph-S- (c), and finally H-Ph-S-

passivated Au TNPs were prepared by exchanging NO2-Ph-S- with H-Ph-S- (d). Black, red, 

green, and blue dash lines represent C-S stretch at 1083 cm-1, aromatic C=C stretch at 1573 

cm-1, N-O stretch at 1340 cm-,1 and N-H stretch at 1390 cm-1. (B) Time dependent SERS 

intensity of different stretches during 24 hr ligand exchange reactions at room temperature: C-S 

(black squares), aromatic C=C- (red stars), N-H (blue spheres), and N-O (green diamonds) 

stretches.

Finally, another possibility for the 𝝀LSPR modulation of Au TNPs upon X-Ph-S- ligand 

passivation is the variable degree of ligand attachment in which the higher the number of bound 

ligands, larger the 𝝀LSPR shift.  One could argue that if the ligand density (number of ligand/nm2) 

on TNPs varies in the following order: NO2-Ph-S- > H-Ph-S- > NH2-Ph-S-, this would provide the 

highest and the lowest 𝝀LSPR for NH2-Ph-S- and NO2-Ph-S-, respectively. To quantify the 

number of ligands attached to the TNP surface, we conducted 1H NMR analysis using ferrocene 

as an internal standard (see Figure S13-S15) for three different thiophenolate-passivated Au 

TNPs with  X-Ph-S- (X = -NH2, -H, and –NO2) ligands. The supporting Information provides a 

detailed experimental procedure and quantification methods. Our results show nearly an 

identical surface coverage for all three X-Ph-S- (3.1-3.4 ligand/nm2). This value is very 

consistent with the thiolated ligand grafting density on metal nanostructures.41 Taken together, 

(A) (B)
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our unique structural construct of Au TNPs allows reversible modulation of the Au free carrier 

concentrations and 𝝀LSPR in which the energy level alignment between Au and ligands profoundly 

influences the magnitude of the Ne values. 

In summary, this work capitalizes on a previously unexplored nanostructure-surface ligand 

construct that demonstrates reversible tuning (up to five cycles) of the plasmoelectric effect of 

metallic nanostructures. Our in-depth spectroscopic characterization shows that ~12% of the 

plasmon active electrons Ne of Au TNPs can be modulated through passivating their surface 

with X-Ph-S- ligands with electron withdrawing and donating groups. The trends in observed 

LSPR shifts and spectra linewidths of TNPs upon functionalization with different X-Ph-S- ligands 

are opposite to the Drude model. We have found that the electron donating group (-NH2) 

provides an ~26 nm LSPR red-shift while the electron withdrawing group (-NO2) provides an 

~14 nm blue-shift with respect to –H]. Using its simplest interpretation, we have also developed 

orbital interaction diagrams in the solid-state to explain the LSPR properties of TNPs under our 

experimental conditions. We hypothesize that the energy level alignment between the 

continuum of states of the Au TNP and the HOMO/LUMO of X-Ph-S- produces hybrid MOs that 

participate in electrons wave function delocalization, which in turn reversibly alters the LSPR 

properties (plasmoelectric effects). Therefore, we would expect that the degree of electron wave 

function delocalization will vary if the strength of electron withdrawing or donating ability of the 

functional groups increase further. As a proof-of-concept, we investigated the plasmoelectric 

effect of Au TNPs by passivating their surface with a very strong electron donating group, 4-

(dimethylamino)thiophenol (4-DMAT) and a very strong electron withdrawing group, 3,5-

Bis(trifluoromethyl)benzenethiol (3,5-TFMBT). We observe a +36 nm 𝝀LSPR red-shift and a -36 

nm blue shift for 4-DMAT and 3,5-TFMBT, respectively, in comparison to H-Ph-S-passivated 

TNPs (data not shown). Importantly, the linewidth and UPS studies add additional strong 

support for the model. We should also mention that the MO model we have presented here has 

some limitations including the lack of participation of multiple HOMOs and LUMOs in the 

formation of hybrid MOs. Furthermore, we did not take ligand dipole moment into consideration 

while determining the Ne and . Further in-depth theoretical investigations are required to 

precisely quantify the observed LSPR properties in our Au-S-Ph-X systems. Nevertheless, the 

unique LSPR behavior of ligand-passivated Au TNPs could be due to their sharp tips and 

edges. The higher free carrier conentration of TNPs potentially reduces effective energy barrier 

and facilitates the delocalization of electron wave functions that together result in an 

unprecedentedly large change in their work function. This is the first example in which LSPR 
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and UPS spectroscopic techniques have been used to monitor the plasmoelectric effect in a 

metallic nanostructure. Taken together, controlling charge delocalization at the metal 

nanostructure-organic ligand (hybrid nanoconjugate) interface should lead to discovery of 

unique hybrid nanoplasmonic materials in which LSPR properties of metallic nanostructures can 

be tuned through programmable manipulation of charge injection/withdraw by surface ligand 

shells. The hybrid conjugates are capable of providing both chemical versatility of organic 

ligands and the shape dependency of LSPR properties3, 4 of metal nanostructures that are 

expected to expedite the fabrication of next generation nanoplasmonic devices and preparation 

of efficient photocatalysts.11-15, 42 
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