5 research outputs found

    The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation

    Get PDF
    Dietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Three meals provided about 70% of the lycopene as (Z)-isomers, either mainly as 5-(Z) or 13-(Z), or as a mixture of 9-(Z) and 13-(Z) lycopene, while three tomato preparations provided lycopene mainly as the (all-E) isomer. Consumption of the 5-(Z) lycopene-rich meal led to a high (60%) proportion of this isomer in TAG-rich lipoproteins (TRL), indicating a good absorption and/or a low intestinal conversion of this isomer. By contrast, consumption of meals rich in 9-(Z) and 13-(Z) lycopene isomers resulted in a low level of these isomers but high amounts of the 5-(Z) and (all-E) isomers in TRL. This indicates that the 9-(Z) and 13-(Z) isomers were less absorbed or were converted into 5-(Z) and (all-E) isomers. Dietary (Z)-lycopene isomers were, therefore, differently isomerised and released in TRL during their intestinal absorption in men. Consuming the three meals rich in (all-E) lycopene resulted in similar proportions of lycopene isomers in TRL: 60% (all-E), 20% 5-(Z), 9% 13-(Z), 2% 9-(Z) and 9% unidentified (Z)-isomers. These results show that the tomato preparation has no impact on the lycopene isomerisation occurring during absorption in human

    HLA-B27 rats develop osteopaenia through increased bone resorption without any change in bone formation

    No full text
    International audienceOsteopaenia is a common complication of inflammatory bowel diseases (IBD). However, the mechanisms of bone loss are still the subject of debate. The aims of this study were to investigate bone loss in HLA-B27 transgenic rats, a spontaneous model of colitis and to compare the results provided by the usual markers of bone remodelling and by direct measurement of bone protein synthesis. Systemic inflammation was evaluated in HLA-B27 rats and control rats from 18 to 27 months of age. Then bone mineral density, femoral failure load, biochemical markers of bone remodelling and protein synthesis in tibial epiphysis were measured. Bone mineral density was lower in HLA-B27 rats than in controls. Plasma osteocalcin, a marker of bone formation, and fractional protein synthesis rate in tibial epiphysis did not differ between the two groups of rats. In contrast, urinary excretion of deoxypyridinoline, a marker of bone resorption, was significantly increased in HLA-B27 rats. The present results indicate that bone fragility occurs in HLA-B27 rats and mainly results from an increase in bone resorption. Systemic inflammation may be the major cause of the disruption in bone remodelling homeostasis observed in this experimental model of human IBD

    The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation

    No full text
    Les figures sont absentes du fichier jointInternational audienceDietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Three meals provided about 70 % of the lycopene as (Z)-isomers, either mainly as 5-(Z) or 13-(Z), or as a mixture of 9-(Z) and 13-(Z) lycopene, while three tomato preparations provided lycopene mainly as the (all-E) isomer. Consumption of the 5-(Z) lycopene-rich meal led to a high (60 %) proportion of this isomer in TAG-rich lipoproteins (TRL), indicating a good absorption and/or a low intestinal conversion of this isomer. By contrast, consumption of meals rich in 9-(Z) and 13-(Z) lycopene isomers resulted in a low level of these isomers but high amounts of the 5-(Z) and (all-E) isomers in TRL. This indicates that the 9-(Z) and 13-(Z) isomers were less absorbed or were converted into 5-(Z) and (all-E) isomers. Dietary (Z)-lycopene isomers were, therefore, differently isomerised and released in TRL during their intestinal absorption in men. Consuming the three meals rich in (all-E) lycopene resulted in similar proportions of lycopene isomers in TRL: 60 % (all-E), 20 % 5-(Z), 9 % 13-(Z), 2 % 9-(Z) and 9 % unidentified (Z)-isomers. These results show that the tomato preparation has no impact on the lycopene isomerisation occurring during absorption in human
    corecore