1,040 research outputs found

    Multiphonon emission model of spin-dependent exciton formation in organic semiconductors

    Full text link
    The maximum efficiency in organic light-emitting diodes (OLEDs) depends on the ratio, r=kS/kTr=k_S/k_T, where kSk_S (kTk_T) is the singlet (triplet) exciton formation rate. Several recent experiments found that r increases with increasing oligomer length from a value r1r \approx 1 in monomers and short oligomers. Here, we model exciton formation as a multi-phonon emission process. Our model is based on two assertions: (i) More phonons are emitted in triplet formation than in singlet formation. (ii) The Huang-Rhys parameter for this phonon emission is smaller in long oligomers than in short ones. We justify these assertions based on recent experimental and theoretical data.Comment: 8 pages, 7 figure

    Large magnetoresistance at room-temperature in semiconducting polymer sandwich devices

    Full text link
    We report on the discovery of a large, room temperature magnetoresistance (MR) effect in polyfluorene sandwich devices in weak magnetic fields. We characterize this effect and discuss its dependence on voltage, temperature, film thickness, electrode materials, and (unintentional) impurity concentration. We usually observed negative MR, but positive MR can also be achieved under high applied electric fields. The MR effect reaches up to 10% at fields of 10mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. We find that the effect is related to the hole current in the devices.Comment: 3 pages, 4 figure

    Large magnetoresistance at room-temperature in small molecular weight organic semiconductor sandwich devices

    Full text link
    We present an extensive study of a large, room temperature negative magnetoresistance (MR) effect in tris-(8-hydroxyquinoline) aluminum sandwich devices in weak magnetic fields. The effect is similar to that previously discovered in polymer devices. We characterize this effect and discuss its dependence on field direction, voltage, temperature, film thickness, and electrode materials. The MR effect reaches almost 10% at fields of approximately 10 mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. Measuring the devices' current-voltage characteristics, we find that the current depends on the voltage through a power-law. We find that the magnetic field changes the prefactor of the power-law, whereas the exponent remains unaffected. We also studied the effect of the magnetic field on the electroluminescence (MEL) of the devices and analyze the relationship between MR and MEL. We find that the largest part of MEL is simply a consequence of a change in device current caused by the MR effect.Comment: 8 figure

    The effect of deuteration on organic magnetoresistance

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Synthetic Metals. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in SYNTHETIC METALS, 161, 7-8, (2011) DOI 10.1016/j.synthmet.2010.11.04

    Hyperfine interaction and magnetoresistance in organic semiconductors

    Full text link
    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. Our study employs both experiment and theoretical modelling. An excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain magnetic field effects in organics, is examined. Whereas this model can explain a few key aspects of the experimental data, we, however, uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.Comment: 10 pages, 7 figures, 1 tabl

    Essays in behavioral economics:Applied game theory and experiments

    Get PDF

    Necati Bey'in Nişan Kasidesi

    Get PDF
    [No Abstract Available
    corecore