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Chapter 1

Introduction

Traditional economic theory builds on models of rational decision makers who maximize

their monetary utilities without having any other concerns. The validity of the predic-

tions of these models has been tested since the early 1930s using laboratory experiments.

It has been well established that the observed behavior in the lab is not always in line

with the predictions of standard economic models. This led economists to question the

underlying behavioral assumptions.

Behavioral Economics aims at understanding the decisions of economic agents who

are not necessarily monetary utility maximizers and accounts for the fact that agents may

have other concerns in addition to economic gain. It integrates insights from other fields

studying human behavior into economics. The current thesis consists of three chapters

that aim at understanding the decisions of economics agents who are not necessarily

monetary utility maximizers in situations with strategic interaction.

A first method used by behavioral economists is to develop theoretical models that use

non-standard preferences that have been found to align empirical evidence. Chapter 2 of

this thesis relates to this point and solves a game-theoretic model assuming that agents

have reference dependent preferences. The results help to explain behavior observed in

various experiments that is hard to reconcile with the assumption of standard preferences.

A second method used by behavioral economists is laboratory experimentation which

allows for careful scrutinizing of behavioral assumptions made in economic models. Chap-

ter 3 and 4 fit within this line of research. In Chapter 3 we experimentally investigate

agents’ behavior in dilemma games with different strategic environments. In Chapter

4 we experimentally study information acquisition in a social dilemma game. In what

follows each chapter is summarized in turn.

Chapter 2 (single-authored) studies a multiple prize contest assuming that agents

have expectation-based reference-dependent preferences a la Koszegi and Rabin (2006).

In a contest game, first the contest designer decides on the prize structure - the number

and the level of prizes -, and then contestants simultaneously undertake costly efforts.

Each contestant has private information about his ability which affects his cost-of-effort.

The model provides an explanation for the observed behavior in recent laboratory ex-

periments. In particular, that high-ability contestants overexert effort while low-ability
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Chapter 1: Introduction

contestants exert very little or no effort in comparison to predictions with standard pref-

erences. I also show that the optimal prize allocation in contests may differ markedly

in the presence of expectation-based loss aversion. In particular, I show that multiple

prizes can be optimal when the cost-of-effort function is linear or concave, where stan-

dard preferences predict the optimality of a single prize in these cases. Several unequal

prizes might be optimal when the cost-of-effort function is convex.

Chapter 3 (co-authored with Wieland Muller and Sigrid Suetens) uses a laboratory

experiment to study the effect of strategic substitutability and strategic complementar-

ity on the extent of cooperative behavior in indefinitely repeated two-player games. On

average, choices in our experiment do not differ between the strategic complements and

substitutes treatments. However, the aggregate data mask two countervailing effects.

On the one hand, the percentage of fully cooperative choices is significantly higher under

strategic substitutes than under strategic complements. We argue that this difference is

driven by the fact that it is less risky to cooperate under substitutes than under comple-

ments. On the other hand, choices of subjects in pairs that do not succeed in cooperating

at the joint-payoff maximum tend to be lower, i.e. less cooperative, under strategic sub-

stitutes than under strategic complements. We relate the latter result to non-equilibrium

forces stemming from a combination of heterogeneity of subjects and differences in the

slope of the best-response function between substitutes and complements.

Chapter 4 (co-authored with Sigrid Suetens) uses laboratory experiments to study

the behavior of agents in a trust game. We design an experiment to study whether

trustors choose to be informed about the type of the trustee in a twice-repeated trust

game where, theoretically, having such information is detrimental for cooperation and

material payoffs. In one treatment trustors are not informed about the type of the

matched trustee and in another treatment they have the choice to obtain information

about the type. We find that almost all subjects in the role of trustors choose to obtain

the information if they have the chance to do so. We also find that trustors who are

informed about the type trust less than the ones who are uninformed.
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Chapter 2

Contests with Expectation-Based

Loss-Averse Players

2.1. Introduction

A contest is an event where participants compete with each other by means of exerting

costly efforts in order to win prizes. There are many economic and social environments

that could be described as contests. In sports, athletes compete with each other for gold,

silver and bronze medals, and in firms, employees exert effort in order to be promoted to

certain positions. In these examples, the contest designer’s motive in choosing the prize

structure is to increase contestants’ performance, for example, to thrill the audience in

sports contests or to obtain the highest output in firms. Since such competitive environ-

ments are prevalent in many contexts, contests and their design are studied extensively

in the economic literature both theoretically and experimentally.

An important common finding in several experimental studies is the discrepancy

between behavior predicted by theory and behavior observed in the lab. In particular,

high-ability subjects spend more effort while low-ability subjects spend less or no effort

in comparison to predictions with standard preferences (e.g. Barut and Noussair 2002,

Noussair and Silver 2006, Ernst and Thoni 2009, Müller and Schotter 2010, Klose and

Sheremeta 2012, Schram and Ondersal 2009). Some of these studies suggest that this

discrepancy may be caused by loss aversion on the part of subjects. One prominent

model of loss aversion is Kőszegi and Rabin’s model of reference dependent preferences.

In this model, next to the standard consumption utility, the agent derives gain-loss utility

by comparing outcomes to his reference point. A key assumption of this model is that

agent’s reference point is his rational expectations.

Recent empirical studies provide evidence for expectations being determinants of

agent’s reference point. Post et al. (2008) examine the behavior of contestants in the TV

show “Deal or No Deal”. They find that contestants’ choices can be explained largely by

experienced previous outcomes. Their result suggests that lagged expectations serve as

a reference point for contestants as predicted by expectation-based reference-dependent

preferences. Abeler et al. (2011) conduct a real-effort experiment to test whether a change

3
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in expectations of subjects affect their effort provision. To do so, they manipulate the

rational expectations of subjects. They find that subjects with high expectations work

harder and longer than subjects with low expectations, in line with the predictions of

expectation-based reference-dependent preferences.

In this paper, I generalize Moldovanu and Sela’s (2001) contest model, by allowing

for expectation-based loss aversion á la Kőszegi and Rabin (2006) on the part of the

contestants. My model predicts that high-ability contestants exert more effort, while low-

ability contestants exert very little or no effort relative to the predictions with standard

preferences. This result is consistent with the behavior observed in recent laboratory

experiments. The effort provision of the contestants has important implications for the

optimal design of the prize structure. In fact, I show that the optimal allocation of prizes

in a contest changes markedly when contestants are expectation-based loss-averse. In

particular, multiple prizes can be optimal when the cost-of-effort function is either linear

or concave, where standard preferences predict the optimality of a single prize.

Moldovanu and Sela (2001) (henceforth M-S) consider the following contest model.

The contest designer first determines the allocation of prizes (the number and the level

of prizes) given a fixed total prize sum. The goal of the contest designer is to maximize

the total expected effort of the contestants. Given the prize structure, contestants with

standard preferences choose their effort level in order to maximize their expected utility.

The contestant with the highest effort wins first prize, the contestant with the second

highest effort wins second prize, and so on until all prizes are distributed. Each con-

testant bears the cost of effort regardless of winning a prize or not. The cost-of-effort

function depends on the ability parameter, which is private information, as well as the

effort level. In this model, I introduce expectation-based loss aversion on the part of

contestants in the sense of Kőszegi and Rabin (2006) (henceforth K-R). Following K-R,

each contestant, next to the standard consumption utility, derives a gain-loss utility by

comparing the actual outcome with his expectations. More specifically, each contestant

compares the realized outcome with all other possible outcomes that could have occurred

and weights each of these comparisons with the ex-ante probability of the alternative

outcome occurring. Incorporating expectations as the agent’s reference point induces a

bifurcating force among the efforts of high- and low-ability contestants. Intuitively, a

high-ability contestant, who has an ex-ante high chance of winning a prize, holds high

expectations for winning a prize. In order to avoid the loss sensation associated with not

winning a prize, he increases his effort level to further increase his chances of winning. A

low-ability contestant, who has an ex-ante low chance of winning a prize, holds low ex-

pectations for winning a prize. In order to avoid the feeling of losing a prize, he decreases

his effort level to further decrease his expectations. Moreover, if a low-ability contestant
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is sufficiently loss-averse, the gain-loss utility might dominate the consumption utility.

In this case, a contestant exerting positive effort might end up with a negative expected

utility. In order to avoid this, he reduces his effort level to the minimum possible level

and exerts zero effort.1

The contest designer, anticipating the contestants’ behavior, aims to maximize the

total expected effort of the contestants. Thus, any change in the contestants’ effort provi-

sion has important implications on the designer’s decision about prize allocation. I show

that, in the presence of expectation-based loss aversion, multiple prizes can be optimal

when the cost-of-effort functions are linear or concave, whereas, with standard prefer-

ences, a single prize is optimal in these cases. Intuitively, if a single prize is announced by

the designer, a low-ability contestant loses the slim hope of winning the prize and exerts

very little or no effort. However, a high-ability contestant exerts effort aggressively in

order to avoid the outcome of not winning a prize, given his high expectations regarding

winning a prize. In general, the decrease in effort of low-ability contestants dominates

the increase in effort of high-ability contestants. This may result in an overall decrease

in the total expected effort. In this case, in order to compensate for the decrease in

total expected effort, the contest designer motivates the low-ability contestants by in-

troducing a second, or possibly a third or more prizes. This result is consistent with

the experimental findings of Freeman and Gelber (2009). They experimentally study the

effort provision in a real-effort tournament, where subjects are asked to solve mazes. In

the experiment they implement different prize structures. They find that the number of

solved mazes is higher when there are multiple differentiated prizes and that the number

of solved mazes is lower when there is a single prize.2

My paper fits well into the recent and growing literature utilizing expectation-based

loss aversion in different settings to give a rationale for a variety of empirical findings.

Crawford and Meng (2011) analyze field data on cab drivers’ working hours and propose

a model of labor supply for cab drivers incorporating the K-R model. Their estimates

suggest that their reference-dependent model of labor supply rationalizes the cab drivers’

behavior observed in the field data. Herweg et al. (2010) study the principal agent model

with moral hazard in the presence of expectation-based loss-averse agents. They show

that the optimal contract is a binary payment scheme consistent with the observed preva-

lence of simple contracts. Lange and Ratan (2010) study first- and second-price sealed

1The intuition presented here is in line with the “loss contemplation” reasoning for overbidding in
auctions presented in Delgado et al. (2008).

2M-S prove that multiple differentiated prizes might be optimal when the cost-of-effort is convex.
Freeman and Gelber (2009) use solving mazes as a measure of effort provision in their experiment. In
maze solving cost-of-effort is likely to be concave rather than convex since it becomes less costly as you
solve more and more mazes due to learning.
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bid auctions for a single item with expectation-based loss-averse bidders. Their model

predicts overbidding in first-prize auctions, in line with evidence from recent laboratory

experiments.3

In the remainder of this paper, I focus on the two-prize case for ease of exposition. I

present the general results for equilibrium effort functions and the optimal prize allocation

when there are p > 2 prizes in the Appendix. In Section 2.2, I present the model and

in Section 2.3, I introduce further notation and discuss participation in the contest. In

Section 2.4, I focus on linear cost-of-effort functions and derive the equilibrium effort

of the contestants. Afterwards, I state the contest designer’s problem and characterize

the optimal prize allocation. I discuss the cases of convex and concave cost-of-effort

functions in Section 2.5. I derive the optimal effort function of the contestants and

provide a sufficient condition for the optimality of multiple prizes. Section 2.6 concludes.

The proofs are relegated to the Appendix.

2.2. The Model

Consider a contest with p prizes V1 ≥ V2 ≥ ... ≥ Vp ≥ 0, where Vj denotes the value of

the j-th prize. The values of the prizes are announced by the contest designer and are

common knowledge. The prizes are normalized, so that
∑p

i=1 Vi = 1.

Furthermore, let there be k contestants, with k ≥ p. Each contestant has an ability

(cost) parameter ci, which is private information. Ability parameters are drawn indepen-

dently from a continuous distribution function F on the interval [m, 1]. The distribution

function F is assumed to have a strictly positive and continuous density F ′ > 0. It is

assumed that F is common knowledge.

All contestants simultaneously exert costly efforts. Denote contestant i’s effort by

xi. Contestant i, exerting effort xi, bears the cost-of-effort denoted by ciγ(xi), where

γ : R+ → R+ is assumed to be a strictly increasing function with γ(0) = 0. Note that a

high ci means low ability (higher cost) for contestant i. In the remainder of the text, the

contestants having higher cis will be referred to as low-ability contestants and those with

low cis will be referred to as high-ability contestants. In order to avoid infinite efforts

caused by zero costs, the highest possible ability m is assumed to be strictly positive.

The contestants are assumed to be expectation-based loss-averse in the sense of K-

R. I will briefly introduce expectation-based loss aversion and explain how it trans-

lates into my model. According to K-R, the overall utility of an agent from consum-

3Kőszegi (2013) summarizes many other studies incorporating reference dependence preferences into
theoretical models.
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ing the n dimensional bundle a = (a1, . . . , an) ∈ Rn when having the reference point

r = (r1, . . . , rn) ∈ Rn is assumed to have two components: a consumption utility and a

gain-loss utility. The consumption utility in dimension l is the standard outcome-based

consumption utility and does not depend on the reference point. The gain-loss utility in

dimension l captures how the agent feels about gaining and losing in this dimension. The

gain-loss utility depends on how consumption in dimension l compares to agent’s refer-

ence point. In particular, the overall utility of an agent from consuming a = (a1, . . . , an)

when having the reference point r = (r1, . . . , rn) is given by:

v(a|r) =
n∑
l=1

υl(al) +
n∑
l=1

µ(υl(al)− υl(rl)) (2.1)

Here, υl denotes the consumption utility in dimension l and µ denotes the gain-loss

function. The gain-loss function is assumed to satisfy the assumptions Kahneman and

Tversky (1979) put on their value function. In my framework, the consumption space

of the contestant has two dimensions, that is n = 2: the prize dimension, i.e. a1 = Vj

and the effort dimension, i.e. a2 = xi. I assume that the consumption utilities in

both prize and effort dimensions are given by υj(.) = ., for j ∈ 1, 2. Put verbally, the

consumption utility of winning a prize Vj is identical to the value of that prize. Similarly,

the consumption utility of exerting effort xi is equal to the cost-of-effort ciγ(xi). To

discuss the gain-loss utility, it is first necessary to define the “gain-loss function” µ.

µ(w) =

{
ηw, if w ≥ 0

ηλw, if w < 0,

where λ ≥ 1 is the weight attached to losses relative to gains and η > 0 is the weight

attached to gain-loss utility relative to consumption utility. With this formulation, I

assume a constant marginal utility from gains and a larger — in magnitude — marginal

disutility from losses. In other words, losses loom larger than gains. However, µ(w) is

not S-shaped in order to keep the analysis tractable.

According to K-R, the gain-loss utility is derived from the standard consumption util-

ity and the reference point, as given in equation (2.1). The reference point is determined

endogenously by the environment. I use personal equilibrium as the solution concept.

Personal equilibrium states that the decision-maker must choose a state-contingent plan

that is optimal given the preferences induced by the plan. That is, expectations should

be consistent with optimal behavior given expectations. Given an outcome, the gain-loss

utility is derived by comparing the given outcome to all possible outcomes that could
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Chapter 2: Contests with Expectation-Based Loss-Averse Players

have occurred and weighting each comparison with the ex-ante probability of the alter-

native outcome. The gain-loss utility for a given outcome is obtained by summing all

these weighted comparisons. The utility from a given outcome is the sum of the stan-

dard consumption utility and the gain-loss utility. The expected utility of a contestant

is the weighted average of all possible outcomes, given that the actual outcome itself is

uncertain.

More precisely, suppose that there are two prizes to be awarded, V1 ≥ V2 ≥ 0, and

k > 2 contestants. There are three possible outcomes for the contestant in this case:

(i) winning first prize V1, (ii) winning second prize V2 and (iii) not winning any prize.

Denote the probabilities with which these outcomes occur by p1, p2 and (1 − p1 − p2),

respectively. The outcome that contestant i wins first prize V1 is evaluated as follows:

V1︸︷︷︸
consumption utility

+ η {p2 (V1 − V2) + (1− p1 − p2)V1}︸ ︷︷ ︸
gain-loss utility︸ ︷︷ ︸

prize dimension

+ −ciγ(xi)︸ ︷︷ ︸
consumption utility

+ 0︸︷︷︸
gain-loss utility︸ ︷︷ ︸

effort dimension

.

(2.2)

In this formulation, the first term is the consumption utility in the prize dimension, that

is, the consumption utility from winning first prize, which is equal to the value V1. The

second term is the gain-loss utility in the prize dimension, which gives the contestant’s

feeling of gain or loss from winning first prize V1. This term is obtained by comparing

the given outcome - winning first prize - to all possible outcomes, namely winning second

prize or not winning anything. Compared to the alternative outcome that the contestant

ends up with second prize V2, which happens with probability p2, he experiences a gain

of V1 − V2; meanwhile, compared to the alternative outcome where the contestant ends

up not winning any prize, which happens with a probability (1−p1−p2), he experiences

a gain of V1. The coefficient η is the weight of the gain-loss utility, which measures

the weight attached to the gain-loss utility relative to the consumption utility. Note

that in all these comparisons the contestant is in the gain domain, since winning first

prize is the best outcome. The last term in 2.2 is the consumption utility in the effort

dimension, namely the standard disutility of exerting effort xi. The gain-loss utility in

the effort dimension is simply zero, since the expected and the actual effort choices of

the contestant coincide.

Similarly, the utility of contestant i from winning second prize V2 is formulated as
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follows:

V2︸︷︷︸
consumption utility

+η {p1λ(V2 − V1) + (1− p1 − p2)V2}︸ ︷︷ ︸
gain-loss utility︸ ︷︷ ︸

prize dimension

+ −ciγ(xi)︸ ︷︷ ︸
consumption utility

+ 0︸︷︷︸
gain-loss utility︸ ︷︷ ︸

effort dimension

.

(2.3)

In the above evaluation, different from the first one, the loss aversion index λ comes

into the picture. This is because the contestant is in the loss domain when he compares

winning second prize V2 to the alternative outcome of winning first prize V1.

The utility of contestant i from not winning any prize is evaluated in the same way:

0︸︷︷︸
consumption utility

+η {p1λ(−V1) + p2λ(−V2)}︸ ︷︷ ︸
gain-loss utility︸ ︷︷ ︸

prize dimension

+ −ciγ(xi)︸ ︷︷ ︸
consumption utility

+ 0︸︷︷︸
gain-loss utility︸ ︷︷ ︸

effort dimension

. (2.4)

In comparisons of not winning any prize to the alternative outcomes of winning first and

second prize, the contestant is in the loss domain. Note that not winning any prize is the

least favorable outcome for the contestant, since each contestant bears the cost-of-effort

regardless of winning a prize.

As the actual outcome is uncertain, the expected utility of contestant i with type ci

is given by the sum of (2.2), (2.3) and (2.4) weighted by their respective probabilities:

EU = p1{V1 + η(p2(V1 − V2) + (1− p1 − p2)V1)− ciγ(xi)} (2.5)

+ p2 {V2 + η(p1λ(V2 − V1) + (1− p1 − p2)V2)− ciγ(xi)}
+ (1− p1 − p2){η(p1λ(−V1) + p2λ(−V2))ciγ(xi)}.

Note that the probabilities p1, p2 and (1 − p1 − p2) are affected by the effort that

the contestant exerts: p1 is the probability that the (k − 1) competitors of contestant

i exerts less effort then contestant i and p2 is the probability that (k − 2) competitors

of contestant i exert less effort than him while one competitor exerts more effort. The

probability of not winning any prize is given by (1 − p1 − p2). Note that by changing

his effort level, each contestant affects the probability of winning a prize as well the

endogenous reference point. Letting λ = 1 and η = 1 equation (2.5) reduces to the

expected utility under standard preferences as formulated in M-S.

The timing of the contest game is as follows. In the first stage, the contest designer

chooses the number and the level of the prizes in order to maximize total expected effort.

The designer’s revenue is the sum of expected efforts. The prize sum is fixed and assumed

9
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to be the normalized
∑k

i=1 Vi = 1. In the second stage, given the prize structure, the

contestants choose their effort levels in order to maximize their expected utility. The

contestant with the highest effort wins first prize V1, and the contestant with the second

highest effort wins second prize V2. In the case when all contestants exerts zero effort, no

prize will be distributed. Each contestant bears the cost-of-effort regardless of winning

any prize.

2.3. Participation in the Contest

Before discussing participation in the contest, it is convenient to introduce the following

notation to ease the exposition. First, define Λ = η(λ− 1), where η is the weight placed

on the gain-loss utility relative to the consumption utility and λ is the degree of loss

aversion. Λ is interpreted as an overall measure of an agent’s degree of loss aversion (see

also Herweg et al. (2010) and Eisenhuth and Ewers (2012)). Λ is strictly positive for a

loss-averse agent while Λ equals zero with standard preferences. Rearranging the terms

in equation (2.5) and substituting Λ = η(λ− 1), the expected utility of contestant i can

be rewritten as follows:

EU = p1V1 + p2V2 − ciγ(xi) (2.6)

−Λ {p1p2(V1 − V2) + (1− p1 − p2)(p1V1 + p2V2)} .

Second, let Fs(c), s ∈ {1, 2}, denote the probability that a contestant with type c has a

higher type than s− 1 of his k − 1 competitors while he has a lower type than k − s of

his k − 1 competitors. To illustrate, F1(c) is the probability that all remaining (k − 1)

contestants have higher types, that is they are less able, and F2(c) is the probability that

(k − 2) of the remaining contestants have lower types while one of them has a higher

type. In other words, F1 and F2 are the first- and second-order statistics. Recall that a

low-ability contestant has a higher ci leading to higher costs. Note that in equilibrium

it is assumed that contestant i exerts higher effort than his competitors with higher

types. Contestant i affects these probabilities of winning the first and the second prize

by choosing his effort level xi.

Now I will discuss the participation in the contest.4 Note that when Λ = 0, the

expected utility of the agent in equation (2.6) equals the expected consumption utility.

In this case, the agent has standard preferences but no gain-loss sensation. M-S show that

there is full participation in the contest under the assumption of standard preferences,

4Participation in the contest means undertaking positive efforts.
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that is when Λ = 0. Whenever Λ > 0, the agent has the expected gain-loss utility, next to

the expected consumption utility. Given the fact that first prize is always larger than or

equal to second prize, the gain-loss utility – the second line of the equation (2.6)– is either

zero or negative. Depending on the relative magnitudes of the gain-loss utility and the

standard consumption utility, the agent may end up with negative expected utility. Put

differently, the agent has a non-negative expected utility only if the expected gain-loss

utility does not dominate the expected consumption utility. If the agent is sufficiently

loss-averse, that is when Λ is sufficiently large, he may end up with negative expected

utility whenever he exerts positive effort. In order to avoid this situation, he exerts zero

effort and stays out of the contest. Intuitively, whenever loss aversion is too pronounced,

the primary concern of a contestant with a low probability of winning becomes reducing

the likelihood of possible losses. In this case, he gives up the slim hope of winning a

prize and avoids losses by reducing his effort level to zero.

Rearranging the terms in the expected utility given by equation (2.6), I obtain a

condition that guarantees a contestant’s participation in the contest. A contestant with

ability parameter c derives a non-negative expected utility from participating in the

contest if and only if:

F1(c)2V1 + 2F1(c)F2(c)V2 + F2(c)2V2

F1(c)V1 + F2(c)V2

> 1− 1

Λ
. (2.7)

Note that whenever Λ ≤ 1, the condition in (2.7) is satisfied for any parameter

c ∈ [m, 1], implying that each contestant has a nonnegative expected utility. However,

whenever Λ ≥ 1, condition (2.7) may be violated for some contestants with sufficiently

small probabilities of winning a prize. Therefore, we obtain:

Lemma 2.1. There is full participation in the contest when Λ ≤ 1. When Λ > 1, there

is a critical type c̃ satisfying (2.7) with equality such that contestants with the ability

c > c̃ drop-out by exerting zero effort.

Lemma 2.1 guarantees full participation in the contest whenever Λ ≤ 1 (see also

Herweg et al. (2010), Eisenhuth and Ewers (2012)). Put differently, when players are

sufficiently loss averse, i.e. Λ > 1, there is a group of players who exert zero effort and

do not participate in the contest. This result is consistent with the recent experimental

evidence (see Müller and Schotter (2010), Barut and Noussair (2002), Noussair and Silver

(2006), Klose and Sheremeta (2012), Ernst and Thöni (2009)).
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2.4. Linear Cost Functions

In this section, I will solve the contestants’ and the designer’s problems, respectively, for

the linear cost-of-effort function. I will first derive the optimal behavior of the contestants

for a given prize structure. Next, given the optimal behavior of the contestants for any

prize structure, I will characterize the optimal prize allocation.

2.4.1. Contestants’ Problem

Assume that the contestants have linear cost-of-effort functions, that is γ(x) = x. The

following proposition displays the equilibrium effort function of a contestant when there

are two prizes to be awarded and there are k > 2 loss-averse contestants.

Proposition 2.1. Assume that there are two prizes V1 ≥ V2 ≥ 0 to be awarded and

k > 2 contestants. If Λ > 1, then there exists a critical type c̃ satisfying (2.7) with

equality, such that in equilibrium contestants with c ≥ c̃ exert zero effort and contestants

with c < c̃ exert effort according to:

b(c) = A(c)V1 +B(c)V2 (2.8)

where the coefficients of the first and second prize are given by:

A(c) = (1− Λ)

∫ c̃

c

−1

a
F ′1(a)da+ Λ

∫ c̃

c

−1

a
(F 2

1 (a))′da (2.9)

and

B(c) = (1− Λ)

∫ c̃

c

−1

a
F ′2(a)da+ Λ

∫ c̃

c

−1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da. (2.10)

If Λ ≤ 1, then each contestant exerts effort according to equation (2.8), where A(c)

and B(c) are as in equations (2.9) and (2.10) with c̃ = 1.

Proof. See Appendix 2.A. Q.E.D.

The equilibrium effort function for the general case with p prizes and k ≥ p contes-

tants is derived in Appendix C.

By Lemma 2.1, full participation in the contest is guaranteed when Λ ≤ 1. In

equilibrium, each contestant exerts an effort equal to a weighted sum of first and second

prize. The weights of the prizes differ for each contestant depending on his chances of

winning first and second prize. When Λ > 1, there is a subset of contestants who exert 0

effort in equilibrium. Note that by letting Λ = 0, the above equilibrium effort functions

reduce to those with standard preferences formulated in M-S.
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Figure 2.1: Equilibrium Effort Functions
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(a) Single prize, V1 = 1 and V2 = 0.
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(b) Two equal prizes, V1 = V2 = 0.5.

Notes: The left panel depicts the equilibrium effort functions when the designer awards a single
prize. The right panel depicts the equilibrium effort functions when the designer awards two
equal prizes. The degree of loss aversion of the contestants is Λ = 0.8.

The following example illustrates the equilibrium effort function of contestants under

a uniform distribution of abilities.

Example 2.1. Assume that there are k = 3 contestants whose abilities are drawn from

the uniform distribution F (c) = 2c − 1 on the interval [1/2, 1]. First, let Λ = 0.8,

guaranteeing that each contestant participates in the contest (see Lemma 2.1). Figure

2.1 depicts the equilibrium effort function in the presence of standard preferences (dashed

line) and expectation-based reference-dependent preferences (solid line).

Recall that the expected utility of a contestant (see equation 2.6) has two parts: the

expected consumption utility and the expected gain-loss utility. The expected consump-

tion utility is equal to the expected utility of a contestant with standard preferences.

Therefore, the difference in the equilibrium behavior between a contestant with stan-

dard preferences and a contestant with reference-dependent preferences stems from the

expected gain-loss utility. Recall that the gain-loss utility is derived by comparing the

actual outcome with the contestant’s expectations. This is the point where expectations

come into the picture. A contestant with high ability has an ex-ante high probability

of winning a prize and has therefore high expectations. In order to avoid the loss of

not winning a prize, he increases his probability of winning by increasing his effort level

further. On the other hand, a contestant with low ability has an ex-ante low probability

of winning a prize, and has therefore low expectations. In order to reduce the scope of

possible losses, he reduces his expectations further by lowering his effort level. Therefore,

expectation-based loss aversion incentivizes high-ability contestants to increase their ef-

fort level while it induces low-ability contestants to lower their effort levels. Therefore,

high-ability contestants exert more effort while low-ability ones exert less effort in com-
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Figure 2.2: Equilibrium Effort Functions
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(a) Single prize, V1 = 1 and V2 = 0.
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(b) Two equal prizes, V1 = 1 = V2 = 0.5.

Notes: The left panel depicts the equilibrium effort functions when the designer awards a single
prize. The right panel depicts the equilibrium effort functions when the designer awards two
equal prizes. The degree of the loss aversion of the contestants is Λ = 1.5.

parison to the predictions of standard preferences.

It is important to note that there are two different ways through which contestants

try to avoid losses. One is by increasing the effort level in order to increases the chances

of winning a prize, and the other one is by decreasing the effort level in order to lower

expectations. High-ability contestants use the first the way since their ex-ante chances

of winning a prize is already high. Low-ability contestants use the second way and

decrease their effort level to decrease their expectations. This is because if a low-ability

contestant tries to put more effort, he faces higher cost of effort in comparison to a

high-ability contestant.

Now let Λ = 1.5, in which case there is a critical type c̃ satisfying condition (2.7) with

equality such that any type c ≥ c̃ exerts zero effort by Lemma 2.1. Figure 2.2 depicts

the equilibrium effort functions when Λ = 1.5.

When the overall degree of loss aversion Λ exceeds 1, we still see the aggressive effort

provision of high-ability contestants and the under-exertion of effort of low-ability contes-

tants. In addition to these findings, the dropping-out behavior of low-ability contestants

occurs. Intuitively, when a low-ability contestant is sufficiently loss-averse, the gain-loss

utility dominates the standard consumption utility. In this case, the contestant focuses

on reducing the net loss arising from the gain-loss utility and exerts zero effort. These

results are consistent with the experimental evidence presented in Müller and Schotter

(2010).

2.4.2. Designer’s Problem

Given the optimal behavior of contestants for any prize allocation, the contest designer

chooses the number and the level of the prizes. The goal of the contest designer is to
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maximize his expected revenue, namely the total expected effort exerted by contestants.

Let V2 = α and V1 = 1− α, where 0 ≤ α ≤ 1/2.

Recall that whenever Λ > 1, there is a positive mass of types c ≥ c̃ exerting zero effort

by Lemma 2.1. Contestants with c < c̃ exert effort according to equation (2.8). When

Λ ≤ 1, there is full-participation, so that c̃ = 1. The average effort of each contestant is

given by:

∫ c̃

m

b(c)F ′(c)dc =

∫ c̃

m

(1− α)A(c) + αB(c)F ′(c)dc, (2.11)

where A(c) and B(c) are given by equations (2.9) and (2.10). As there are k contestants,

the designer’s problem is given by:

max
0≤α≤1/2

k

∫ c̃

m

(A(c) + α(B(c)− A(c)))F ′(c)dc. (2.12)

Since the maximization is over α, the designer’s problem can be written as follows:

max
0≤α≤1/2

α

∫ c̃

m

(B(c)− A(c))F ′(c)dc. (2.13)

The solution to the designer’s problem depends on the sign of the integral in equation

(2.13): it is optimal to award a single prize if the integral is negative, and to award two

equal prizes otherwise. Note that awarding two unequal prizes is never optimal due to

the linearity of the program. The sign of the integral depends on the specific properties

of the distribution function F of abilities, the number of contestants k and the degree of

loss aversion Λ.

Proposition 2.2. Assume that there are at most two prizes to be awarded with V1 ≥
V2 ≥ 0 and k > 2 contestants with linear cost-of-effort functions. Then it is optimal to

allocate the whole prize sum to a single prize if, and only if:∫ c̃

m

(B(c)− A(c))F ′(c)dc < 0 (2.14)

and to award two equal prizes otherwise.

Proof. See Appendix 2.B. Q.E.D.

The solution to the designer’s problem for the general case with p prizes, k ≥ p

contestants and any Λ is derived in Appendix 2.D. The following example illustrates the

optimal prize allocation under a uniform distribution of abilities.
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Example 2.2. Assume that there are 3 contestants, whose abilities are drawn from

a uniform distribution F (c) = 2c − 1 on the interval [0.5, 1]. Figure 2.3 depicts the

equilibrium effort functions when the designer announces a single grand prize, b(1,0), and

two equal prizes, b(0.5,0.5) separately. The indices (1, 0) and (0.5, 0.5) refer to the prize

allocations V1 = 1, V2 = 0 and V1 = 0.5, V2 = 0.5, respectively. The dashed and the bold

lines are the equilibrium effort functions under the assumption of standard preferences

and expectation-based reference-dependent preferences, respectively.

In general — for both preference types — a second prize motivates low-ability contes-

tants to increase their effort level. Intuitively, low-ability contestants would give up the

competition if there is only a single prize and exert more effort when the contest designer

announces a second prize. On the other hand, a second prize will give high-ability con-

testants an incentive to lower their effort levels. This is because high-ability contestants

are mainly competing for first prize and introducing a second prize will lower the value

of the first (since the prize sum is constant). Figure 2.3 illustrates the effort decrease of

high-ability contestants and the effort increase of low-ability ones in the presence of a

second prize.

The contest designer decides on whether to introduce a second prize by comparing

the differences in effort provision of high and low-ability contestants. If the increase

in total expected effort by low-ability contestants — in the presence of a second prize

— dominates the decrease in total expected effort by high-ability contestants, then the

contest designer is better off by introducing a second prize.

M-S show that when contestants have standard preferences, the effort increase of low-

ability contestants does not compensate for the effort decrease of high-ability contestants

relative to the single prize case, so that a single first prize is optimal. A reasonable

conjecture is that the result of this comparison will depend on the number of contestants

and the specific properties of the ability distribution. Surprisingly M-S show that this

conjecture is wrong in their setup, i.e. their result does not depend on these variables.

When contestants have expectation-based reference-dependent preferences, however, the

comparisons of effort provision across types depend on the variables.

For the specific values taken in this example, and contrary to the case of standard

preferences, it is optimal to award two equal prizes. The reason is that loss aversion

leads low-ability contestants to provide little or no effort and high-ability contestants

to exert effort aggressively in comparison to the predictions of standard preferences. In

this case, the effort increase of low-ability contestants does compensate for the effort

decrease of high-ability contestants relative to the single prize case. As such, the contest

designer is better off when he allocates the total prize sum as two equal prizes. The

optimality of two equal prizes - rather than two unequal prizes - is due to the linearity
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Figure 2.3: The Beneficial Effect of Second Prize
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Notes: The figure depicts the optimal effort functions in the presence of a single and two prizes.
The graphs on the upper panel are the equilibrium effort functions in the presence of reference
dependent preferences preferences and the one on the lower panel is in the presence of standard
preferences preferences.

of the program (see the proof of Proposition 2.2). When Λ = 1.5, the effort decrease of

low-ability contestants becomes more prominent due to drop-outs, depicted in the right

panel of Figure 2.3.

Figure (2.4) depicts the optimal prize structure for the combination of different values

for k and m under a uniform distribution of abilities. For the values in the shaded area it

is optimal to award two equal prizes, while a single prize is optimal in the unshaded area.

As the overall degree of loss aversion increases, the area over which two equal prizes are

optimal expands.

As the number of contestants k increases, keeping everything else constant, the benefi-

cial effect of a second prize on the total expected effort increases. Intuitively, a contestant

has a lower probability of winning when there are more competitors. All but the high-

ability contestants will have lower expectations regarding winning a prize if there are

more competitors. The contest designer motivates these contestants by introducing a

second prize, allowing him to obtain a higher total expected effort.

As the minimum effort cost m increases it becomes optimal to award two prizes. One
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Figure 2.4: Optimal Prize Allocation
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Notes: The figure illustrates the optimal allocation of prizes depending on the number of
contestants k and the lowest type m. For the values of k and m in the unshaded area, it is
optimal to award a single prize, while for the values in the shaded area it is optimal to allocate
the total prize sum as two equal prizes.

way to explain this result is as follows. In the case where m is large contestants have

high cost of efforts in comparison to the case of a small m. So, the number of contestants

who overexert effort will be much less in the case of a large m in comparison to the case

of a small m. When m is small, the overexertion of effort by high-ability contestants

compensate for the under exertion of effort and dropping out behavior. In this case the

contest is better off by awarding a single grand prize and motivating the high-ability

contestants. While, when m is large, the reasoning goes in the opposite direction since

there is relatively less number of contestants who overexert effort. In this case the contest

designer is better off by awarding two prizes and motivating low-ability contestants.

2.5. Concave and Convex Cost Functions

In this section, I will solve the contestants’ and the designer’s problem, respectively, for

convex or concave cost-of-effort functions, similar to the previous section. I will first

derive the optimal behavior of the contestants for a given prize structure. Next, given

the optimal behavior of the contestants for any prize structure, I will characterize the

optimal prize allocation.

2.5.1. Contestants’ Problem

Assume that the contestants have either concave or convex cost-of-effort functions with

γ(0) = 0 and γ being an increasing function. The following proposition displays the
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equilibrium effort function of a contestant when there are two prizes to be awarded and

there are k > 2 contestants.

Proposition 2.3. Assume that there are two prizes V1 ≥ V2 ≥ 0 to be awarded and

k > 2 contestants. If Λ > 1, then there exists a critical type c̃ satisfying (2.7) equality

such that – in equilibrium – contestants with c ≥ c̃ exert zero effort and contestants with

c < c̃ exert effort according to:

b(c) = γ−1 (A(c)V1 +B(c)V2) , (2.15)

where the coefficients of first and second prize are given by equations (2.9) and (2.10),

respectively. If Λ ≤ 1, then the optimal effort for all types is positive and given by

equation (2.15), where A(c) and B(c) are defined by equations (2.9) and (2.10) with

c̃ = 1.

Proof. See Appendix 2.A. Q.E.D.

The equilibrium effort function for the general case with p prizes and k ≥ p con-

testants is derived in Appendix 2.C. The equilibrium effort of each contestant is given

by a simple transformation of the equilibrium effort obtained in the linear cost case.

Note that when Λ = 0, the equilibrium above reduces to that with standard preferences

formulated in M-S.

The following example illustrates the equilibrium effort function of contestants with

convex and concave cost-of-effort functions, respectively.

Example 2.3. Assume that there are k = 3 contestants, whose abilities are drawn

independently from the uniform distribution F (c) = 2c − 1 on the interval [1/2, 1], as

in example 2.1. Assume that the concave cost-of-effort function is γ(x) =
√
x and the

convex cost-of-effort function is γ(x) = x2. Figure 2.5 and 2.6 depict the equilibrium

effort functions when contestants have concave and convex cost-of-effort functions, re-

spectively. The upper and lower panels of these figures illustrate the effort provision

in equilibrium respectively in the cases where there is full participation in the contest

(when Λ = 0.8) and there is dropping out (when Λ = 1.5).

The equilibrium effort functions in the case of convex or concave cost-of-effort func-

tions is obtained by a simple transformation of the equilibrium effort curve found in the

linear cost-of-effort case. Therefore, the intuition provided in Example 2.1 applies to

the cases of concave or convex cost-of-effort functions in the same way. In particular,

high-ability contestants aggressively exert effort while low-ability contestants exert little

or no effort, relative to the predictions with standard preferences. This is because a con-

testant with high ability, holding high expectations, exerts effort aggressively in order to
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Figure 2.5: Equilibrium Effort Functions for Concave Costs γ(x) =
√
x
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(b) Two equal prizes, V1 = 1 = V2 = 0.5.
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(c) Single prize, V1 = 1 and V2 = 0.
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(d) Two equal prizes, V1 = 1 = V2 = 0.5.

Notes: The left panels depict the equilibrium effort curves when there is a single prize, while
the right panels depict the equilibrium effort curves when there are two equal prizes. The
upper and the lower panels illustrate the equilibrium effort curves, respectively, for Λ = 0.8
and Λ = 1.5.

avoid the loss of not winning a prize. On the other hand, a contestant with low ability,

holding low expectations, exerts little effort to reduce his expectations further in order to

minimize the loss sensation stemming from their gain-loss utility. Whenever contestants

are sufficiently loss-averse, i.e. Λ > 1, low-ability contestants exert zero effort, dropping

out of the contest. The reason is that the gain-loss utility might dominate the standard

consumption utility for a low-ability contestant. In this case, the contestant’s primary

concern becomes avoiding possible losses, incentivizing him to drop his effort level to

zero.

2.5.2. Designer’s Problem

Let V2 = α and V1 = 1 − α, where 0 ≤ α ≤ 1/2. Analogous to the case of linear

cost-of-effort functions, the average effort of each contestant with a convex or concave

cost-of-effort function is given by:
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Concave and Convex Cost Functions

Figure 2.6: Equilibrium Effort Functions for Convex Costs γ(x) = x2
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(b) Two equal prizes, V1 = 1 = V2 = 0.5.
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(c) Single prize, V1 = 1 and V2 = 0.

0.5 0.6 0.7 0.8 0.9 1.0
ability0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

effort

(d) Two equal prizes, V1 = 1 = V2 = 0.5.

Notes: The left panels depict the equilibrium effort curves when the designer awards a single
prize. The right panels depict the equilibrium effort curves when the designer awards two equal
prizes. For both structures, the degree of loss aversion of the contestants is Λ = 1.5.

∫ c̃

m

γ−1 (A(c) + α(B(c)− A(c)))F ′(c)dc (2.16)

where A(c) and B(c) are given by equations (2.9) and (2.10). Note that whenever Λ ≤ 1,

full participation in the contest is guaranteed (see Lemma 2.1) so that c̃ = 1. Since there

are k contestants, the total expected effort — the revenue of the designer — is given by:

R(α) = k

∫ c̃

m

γ−1(A(c) + α(B(c)− A(c)))F ′(c)dc. (2.17)

Since the goal of the designer is to maximize the total expected effort, the designer’s

problem becomes:

max
0≤α≤1/2

k

∫ c̃

m

γ−1(A(c) + α(B(c)− A(c)))F ′(c)dc. (2.18)

The solution to the designer’s problem depends on the shape of the revenue function

R(α). More specifically, awarding a single prize is optimal if R(α) is strictly decreasing,
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that is if the revenue function has its maximum at α = 0. Otherwise, the revenue

function R(α) might have its maximum at α 6= 0, leading to the optimality of the two

prizes. The shape of the revenue function R(α) depends on the degree of loss aversion

Λ as well as the number of contestants and the specific properties of the distribution

function F . If the shape of the revenue function R(α) is concave, the maximization

problem of the designer might have an interior solution with α∗ ∈ (0, 1/2). In this case,

two unequal prizes become optimal, in contrast to the case of linear cost-of-efforts. In

the following proposition, I provide a sufficient condition for the optimality of two prizes.

Proposition 2.4. Assume that there are at most two prizes to be awarded with V1 ≥
V2 ≥ 0 and k > 2 contestants with convex or concave cost-of-effort functions. A sufficient

condition for the optimality of two prizes is given by:∫ c̃

m

(B(c)− A(c))g′(A(c))F ′(c)dc > 0. (2.19)

If condition (2.19) is satisfied, then it is optimal to award two prizes V1 = 1 − α∗ and

V2 = α∗ with R′(α∗) = 0, otherwise it is optimal to award a single prize.

Proof. See Appendix 2.B. Q.E.D.

Letting Λ = 0, the condition (2.19) reduces to that provided in M-S. The integral

in condition (2.19) is an increasing function of the number of competitors. Hence if the

number of competitors is high enough, then it is optimal to award two prizes. The ratio

of the prizes depends on the distribution of types as well as their degree of loss aversion.

If the cost-of-effort is concave and there is full participation in the contest - that

is if Λ ≤ 1 - then the shape of the revenue function R(α) is convex. In this case,

the maximization problem in equation (2.18) has corner solutions. In other words, it

is optimal to award either a single prize or two equal prizes, obtaining the following

corollary:

Corollary 2.1. Assume that there are at most two prizes to be awarded with V1 ≥ V2 ≥ 0

and k > 2 contestants with concave cost-of-effort functions. If Λ ≤ 1, then it is optimal

to award either a single prize or two equal prizes.

Proof. See Appendix 2.B. Q.E.D.

The following example illustrates the optimal prize allocation for concave cost-of-

efforts under a uniform distribution of abilities.

Example 2.4. Assume that there are k contestants, whose abilities are drawn from a

uniform distribution F (c) = 2c− 1 on the interval [1/2, 1]. Assume, moreover, that the
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Figure 2.7: The Beneficial Effect of Second Prize
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Notes: The figure depicts the optimal effort functions in the presence of a single and two prizes.
The graphs on the upper panel are the equilibrium effort functions in the presence of reference
dependent preferences preferences and the one on the lower panel is in the presence of standard
preferences preferences.

cost-of-effort function is γ(x) =
√
x. Figure 2.7 depicts the equilibrium effort functions

in the case of a single prize, b(1,0), and two equal prizes, b(0.5,0.5). The dashed and the

solid lines are the equilibrium effort curves under the assumption of standard preferences

and expectation-based reference-dependent preferences, respectively.

Since the equilibrium effort curve in the case of a concave cost-of-effort function is a

transformation of that obtained in the case of a linear cost-of-effort function, the intuition

presented in Example 2.2 applies to this example as well. Particularly, introducing a

second prize motivates low-ability contestants to increase their effort levels while leading

high-ability contestants to lower their effort levels. Figure 2.7 illustrates the decrease in

effort of high-ability types and the increase in effort of low-ability types, in the presence

of a second prize. If the former effect compensates for the latter one, it is optimal to

award a second prize.

M-S show that – when contestants have standard preferences – it is optimal to award

a single prize in the case of concave cost-of-effort functions. As in the case of linear cost-

of-effort, they show that this prediction is independent of the number of contestants and
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Figure 2.8: Optimal Prize Allocation
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Notes: The figure illustrates the optimal allocation of prizes depending on the number of
contestants k and the lowest type m. For the values of k and m in the unshaded area, it is
optimal to award a single prize. When Λ = 0.8 for the values of k and m in the unshaded area,
it is optimal to award two equal prizes, and when Λ = 1.5 it might be optimal to allocate the
prize sum as two unequal prizes.

the ability distribution. When contestants have expectation-based reference-dependent

preferences, however, awarding a second prize can be optimal depending on the number

of players and the ability distribution. Figure (2.8) depicts the optimal prize structure

for different values of k and m under a uniform distribution of abilities.

Figure 2.8a illustrates the case with full participation in the contest. In this case, it

is optimal to award two equal prizes for the values of k and m in the shaded area, and

to award a single prize in the remaining area. In comparison to the linear cost-of-effort

functions, the optimality of a single prize becomes less likely. This is because, with

the concave cost-of-effort functions, the ability range over which contestants exert little

effort is larger relative to linear cost-of-effort functions. Figure 2.8b illustrates the case

in which low-ability contestants drop out. In this case, the beneficial effect of a second

prize becomes more prominent for the contest designer, so that the area over which it

is optimal to offer a single prize shrinks. In contrast to the case of linear cost-of-effort,

it can be optimal to award two unequal prizes when there is dropping-out behavior. As

the values of k and m increase, awarding two prizes becomes optimal, as discussed in

Example 2.2.
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Conclusion

2.6. Conclusion

In this paper, I studied a multiple prize contest under incomplete information, general-

izing the contest model of Moldovanu and Sela (2001) by allowing for expectation-based

loss aversion according to Kőszegi and Rabin (2006). The model presented in this paper

is able to align the common experimental finding that high-ability contestants exert effort

aggressively while low-ability contestants exert very little effort or drop out of the con-

test, in comparison to the predictions with standard preferences. An expectation-based

loss-averse contestant has an expected gain-loss utility next to his expected consumption

utility. The expected gain-loss utility measures the net loss sensation derived by com-

paring the actual outcome to all other alternative outcomes that might have occurred.

High-ability and low-ability contestants have different incentives in order to avoid the

feeling of loss stemming from the gain-loss utility. Intuitively, a high-ability contestant,

who has high expectations for winning a prize, increases his effort level in order to avoid

the loss of not winning a prize. A low-ability contestant, who has low expectations for

winning a prize, decreases his expectations further by exerting very little effort to avoid

the situation of losing a prize. When loss aversion is sufficiently pronounced, gain-loss

utility dominates the standard consumption utility. In this case, and in order to avoid

the net loss, a low-ability contestant exerts zero effort and drops out of the contest. The

second main result is that in the presence of expectation-based loss aversion, awarding

multiple prizes can be optimal where standard preferences predict the optimality of a

single prize. The beneficial effect of a second prize becomes more prominent when con-

testants are expectation-based loss-averse. The reason is that low-ability contestants

provide little effort due to their low expectations regarding winning a prize. The contest

designer can increase his revenue — total expected effort — by motivating low-ability

contestants with a second or possibly a third or more prizes. The optimality of multiple

prizes is consistent with the prevalence of multiple prize contests in the real world.
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Appendices

2.A. Derivation of Equilibria

Proof of Proposition 2.1. Assume that all contestants except i exert effort according to

the function b. Moreover assume that b is strictly monotonic and differentiable. I will

derive the optimal effort function first for the case when there is full participation in the

contests (when Λ ≤ 1) and then for the case when some contestants drop out the contest

( when Λ > 1).

Suppose that each contestant participates in the contest, that is Λ ≤ 1. The maxi-

mization problem of the contestant i is:

maxx {p1{V1 + η(p2(V1 − V2) + (1− p1 − p2)V1)− cx}
+ p2 {V2 + η(p1λ(V2 − V1) + (1− p1 − p2)V2)− cx)}
+ (1− p1 − p2){η(p1λ(−V1) + p2λ(−V2))− cx}} . (2.20)

where the probabilities of winning the first and the second prize ,p1 and p2, are defined

as

p1 =(1− F (b−1(x)))k−1 (2.21)

p2 =(k − 1)(1− F (b−1(x)))k−2F (b−1(x)).

p1 is the probability that all remaining (k−1) contestants have higher types, that is they

are less able, and p2 is the probability that (k − 2) of the remaining contestants have

lower types while one of them has a higher type. Note that a contestant affects these

probabilities of winning the first and the second prize by choosing his effort level x.

Denote the inverse effort function b−1 by y. Substituting b−1 and Λ = η(λ − 1) and

rearranging the terms, the maximization problem becomes:

maxx
{

(1− Λ)(1− F (y))k−1V1 + (1− Λ)(k − 1)(1− F (y))k−2F (y)V2

−cx+ Λ(1− F (y))2k−2V1 + (Λ)(k − 1)2(1− F (y))2k−4F 2(y)V2

+ 2Λ(k − 1)(1− F (y))2k−3F (y)V2

}
. (2.22)

Using the strict monotonicity of b and symmetry, the first order condition (FOC) is
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given by:

(
−(1− Λ)(k − 1)(1− F (y))k−2F ′(y)y′ − Λ(2k − 2)(1− F (y))2k−3F ′(y)y′

)
V1

1

y

+
(
−(1− Λ)(k − 1)(1− F (y))k−3F ′(y)y′(1− (k − 1))F (y)

+ 2Λ(k − 1)(1− F (y))2k−5F ′(y)y′(1− kF (y)− ((k − 1)2 − 1)F (y)2
)
V2

1

y
= 1(2.23)

A contestant with the highest possible type c = 1 never wins a prize under the assumption

k > 2. Thus the optimal effort of this contestant is always 0, providing y(0) = 1 as a

boundary condition.

Note that the FOC is a differential equation with separated variables, since the left

hand side of the equation (2.33) is a function of y only. Denote

H(y) = V1

(
(1− Λ)(k − 1)

∫ 1

y

1

t
(1− F (t))k−2F ′(t)dt+ Λ(2k − 2)

∫ 1

y

1

t
(1− F (t))2k−3F ′(t)dt

)
+V2

(
(1− Λ)(k − 1)

∫ 1

y

1

t
(1− F (t))k−3(1− (k − 1))F (t)F ′(t)dt

+2Λ(k − 1)

∫ 1

y

1

t
(1− F (t))2k−5F ′(t)(1− kF (t)− ((k − 1)2 − 1)F (t)2)dt

)
.

The solution to the differential equation (2.33) with the boundary condition y(0) = 1

becomes: ∫ 0

x

dt = −H(y). (2.24)

Equation (2.28) gives x = H(y) = H(b−1(x)) implying b = H. In other words, the effort

function of each player is given by b(c) = A(c)V1 +B(c)V2, where

A(c) =(1− Λ)

∫ 1

c

1

a
(k − 1)(1− F (a))k−2F

′
(a)da

+ Λ

∫ 1

c

1

a
(2k − 2)(1− F (a))2k−3F

′
(a)da

and

B(c) =(1− Λ)

∫ 1

c

1

a
(k − 1)(1− F (a))k−3 (−1 + (k − 1)F (a))F

′
(a)da

+ Λ

∫ 1

c

1

a
(2k − 2)(1− F (a))2k−5

(
−1 + kF (a) + ((k − 2)2 − 1)F (a)2

)
F

′
(a)da.

Note that the terms multiplied by Λ and (1 − Λ) in A(c) correspond to −F ′1(a)

and −(F 2
1 (a))′ , and in B(c) correspond to −F ′2(a) and − ((F 2

2 (a))′ + (2F1(a)F2(a))′)
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respectively, yielding

A(c) =(1− Λ)

∫ 1

c

−1

a
F ′1(a)da+ Λ

∫ 1

c

−1

a
(F 2

1 (a))′da (2.25)

and

B(c) =(1− Λ)

∫ 1

c

−1

a
F ′2(a)da+ Λ

∫ 1

c

−1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da. (2.26)

It remains to show that the equilibrium effort function b(c) is differentiable and

strictly decreasing. The former one is obvious. To show that the effort function is

strictly decreasing, consider the derivatives of A(c) and B(c):

A′(c) =(1− Λ)− 1

c
(k − 1)(1− F (c))k−2F

′
(c)

− Λ
1

c
(2k − 2)(1− F (c))2k−3F

′
(c) < 0

and

B′(c) =(1− Λ)− 1

c
(k − 1)(1− F (c))k−3 (−1 + (k − 1)F (c))F

′
(c)

+ Λ− 1

c
(2k − 2)(1− F (c))2k−5

(
−1 + kF (c) + ((k − 2)2 − 1)F (c)2

)
F

′
(c).

The derivative of the effort function b(c) becomes:

b′(c) = A′(c)V1 +B′(c)V2

≤ V2 (A′(c) +B′(c))

< 0

since V2 ≤ V1 and B′(c) is smaller than A′(c) in magnitude. Thus b(c) is strictly decreas-

ing.

Now suppose that contestants are sufficiently loss-averse, that is Λ > 1. In this case

equation (2.31) implies that a non-negative expected pay-off from participating in the

contest results for a contestant with type c only if

(F1(c))2V1 + (F2(c))2V2 + 2F1(c)F2(c)V2

F1(c)V1 + F2(c)V2

> 1− 1

Λ
. (2.27)

By Lemma 2.1 there exists a critical type, c̃, such that for all types c < c̃ equation (2.27)

is satisfied while for all types c > c̃ it is violated. In order to secure a nonnegative pay-off
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all contestants with c > c̃ exert 0 effort in equilibrium. Note that c̃ = 1 whenever Λ ≤ 1.

The maximization problem of the agents remains the same, however the boundary

condition becomes y(0) = c̃ when Λ > 1. Denote

H̃(y) = V1

(
(1− Λ)(k − 1)

∫ c̃

y

1

t
(1− F (t))k−2F ′(t)dt+ Λ(2k − 2)

∫ c̃

y

1

t
(1− F (t))2k−3F ′(t)dt

)
+V2

(
(1− Λ)(k − 1)

∫ c̃

y

1

t
(1− F (t))k−3(1− (k − 1))F (t)F ′(t)dt

+2Λ(k − 1)

∫ c̃

y

1

t
(1− F (t))2k−5F ′(t)(1− kF (t)− ((k − 1)2 − 1)F (t)2)dt

)
.

The solution to the differential equation (2.33) with the new boundary condition

becomes: ∫ 0

x

dt = −H̃(y). (2.28)

Using the same arguments as in the case of Λ ≤ 1, the effort function of each contes-

tant with type c ≤ c̃ is given by b(c) = A(c)V1 +B(c)V2, where

A(c) =(1− Λ)

∫ c̃

c

1

a
(k − 1)(1− F (a))k−2F

′
(a)da

+ Λ

∫ c̃

c

1

a
(2k − 2)(1− F (a))2k−3F

′
(a)da

and

B(c) =(1− Λ)

∫ c̃

c

1

a
(k − 1)(1− F (a))k−3 (−1 + (k − 1)F (a))F

′
(a)da

+ Λ

∫ c̃

c

1

a
(2k − 2)(1− F (a))2k−5

(
−1 + kF (a) + ((k − 2)2 − 1)F (a)2

)
F

′
(a)da.

Substituting F1(c) and F2(c), the weights of the first and the second prizes become:

A(c) =(1− Λ)

∫ c̃

c

−1

a
F ′1(a)da+ Λ

∫ c̃

c

−1

a
(F 2

1 (a))′da (2.29)

and

B(c) =(1− Λ)

∫ c̃

c

−1

a
F ′2(a)da+ Λ

∫ c̃

c

−1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da. (2.30)

Note that the weights of the first and the second prize are the same for any value of

Λ, with the critical type being the least able contestant c̃ = 1 whenever Λ ≤ 1.

The optimal effort function is differentiable and strictly decreasing when c̃ < 1, similar
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Chapter 2: Contests with Expectation-Based Loss-Averse Players

to the case of c̃ = 1.

Q.E.D.

Proof of Proposition 2.3. The equilibrium effort function in the case of convex or concave

cost-of-effort is derived in a similar to the case of linear cost-of-effort. As in the case

of linear cost-of-effort, I will derive the optimal effort function first for the case when

there is full participation in the contests (when Λ ≤ 1) and then for the case when some

contestants drop out the contest ( when Λ > 1).

Assume that all contestants except i exert effort according to the function b which is

strictly monotonic and differentiable. Suppose that each contestant participates in the

contest, that is Λ ≤ 1. The maximization problem of the contestant i with convex or

concave cost-of-effort γ(x) is:

maxx {p1{V1 + η(p2(V1 − V2) + (1− p1 − p2)V1)− cγ(x)}
+ p2 {V2 + η(p1λ(V2 − V1) + (1− p1 − p2)V2)− cγ(x))}
+ (1− p1 − p2){η(p1λ(−V1) + p2λ(−V2))− cγ(x)}} . (2.31)

where the probabilities of winning the first and the second prize ,p1 and p2, are defined

as in equation (2.21). Denote the inverse effort function b−1 by y. Substituting b−1 and

Λ = η(λ− 1) and rearranging the terms, the maximization problem becomes:

maxx
{

(1− Λ)(1− F (y))k−1V1 + (1− Λ)(k − 1)(1− F (y))k−2F (y)V2

−cγ(x) + Λ(1− F (y))2k−2V1 + (Λ)(k − 1)2(1− F (y))2k−4F 2(y)V2

+ 2Λ(k − 1)(1− F (y))2k−3F (y)V2

}
. (2.32)

.

Using the strict monotonicity of b and symmetry, the first order condition (FOC) is

given by:

(
−(1− Λ)(k − 1)(1− F (y))k−2F ′(y)y′ − Λ(2k − 2)(1− F (y))2k−3F ′(y)y′

)
V1

1

y

+
(
−(1− Λ)(k − 1)(1− F (y))k−3F ′(y)y′(1− (k − 1))F (y)

+ 2Λ(k − 1)(1− F (y))2k−5F ′(y)y′(1− kF (y)− ((k − 1)2 − 1)F (y)2
)
V2

1

y
= γ′(x)(2.33)

Using the boundary condition y(0) = 1, the solution to this differential equation is

given by γ(x) = H(y), where H(y) is given by equation (2.24). Thus x = γ−1(H(y))

implying that b = γ−1(H). The effort function of each contestant is given by b(c) =

γ−1 (A(c)V1 +B(c)V2), where A(c) and B(c) are given by equation (2.9) and (2.10) with
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c̃ = 1 respectively.

Now suppose that contestants are sufficiently loss-averse, that is Λ > 1. In this case

by Lemma 2.1 there exists a critical type, c̃, such that for all types c < c̃ equation (2.27)

is satisfied while for all types c > c̃ it is violated. Recall that contestants with c > c̃

exert 0 effort in equilibrium. Note that c̃ = 1 whenever Λ ≤ 1.

The maximization problem of the agents remains the same, however the boundary

condition becomes y(0) = c̃ when Λ > 1. The solution to the differential equation

(2.33) with the new boundary condition becomes γ(x) = H̃(y), where H̃(c) is given

by equation (2.28). The effort function of each contestant is then given by b(c) =

γ−1 (A(c)V1 +B(c)V2), where A(c) and B(c) are given by equations (2.9) and (2.10)

respectively.

It remains to show that the equilibrium effort function b(c) is differentiable and

strictly decreasing. The former one is obvious. To show that the effort function is

strictly decreasing, consider the derivative of the effort function, b′(c):

b′(c) = γ−1(A(c)V1 +B(c)V2) (A′(c)V1 +B′(c)V2)

< 0

Using the proof of Proposition 1 and the fact that γ−1 > 0, one concludes that b(c) is

strictly decreasing.

Q.E.D.

2.B. Optimal Allocation of Prizes

Proof of Proposition 2.2. Assume that there are two prizes V1 ≥ V2 ≥ 0 to be awarded

and k > 2 contestants. Assume that contestants have linear cost-of-effort functions. By

Proposition 2.1 the average effort of each contestant is given by:∫ c̃

m

b(c)F ′(c)dc =

∫ c̃

m

(1− α)A(c) + αB(c)F ′(c)dc. (2.34)

where A(c) and B(c) are given by equations (2.9) and (2.10). Note that c̃ = 1 whenever

Λ ≤ 1. The designer’s problem becomes:

max
0≤α≤1/2

k

∫ c̃

m

(A(c) + α(B(c)− A(c)))F ′(c)dc. (2.35)
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Equivalently

max
0≤α≤1/2

α

∫ c̃

m

(B(c)− A(c))F ′(c)dc. (2.36)

It is optimal to award a single first prize if and only if the integral in equation (2.36) is

negative. Otherwise the optimal prize structure consists of two equal prizes, due to the

linearity of the program. Q.E.D.

Proof of Proposition 2.4. Assume that there are two prizes V1 ≥ V2 ≥ 0 to be awarded

and k > 2 contestants with either convex or concave cost-of-effort functions. By Propo-

sition 2.3 the average effort of each contestant is given by:∫ c̃

m

b(c)F ′(c)dc =

∫ c̃

m

γ−1 ((1− α)A(c) + αB(c))F ′(c)dc. (2.37)

where A(c) and B(c) are given by equations (2.9) and (2.10). Note that c̃ = 1 whenever

Λ ≤ 1. The designer’s revenue is given by:

R(α) = k

∫ c̃

m

γ−1 ((1− α)A(c) + αB(c))F ′(c)dc. (2.38)

The designer’s problem becomes:

max
0≤α≤1/2

k

∫ c̃

m

γ−1 ((1− α)A(c) + αB(c))F ′(c)dc. (2.39)

If condition in equation (2.19) is not satisfied, that is R′(0) < 0, then the integral in

equation (2.39) is maximized at α = 0. If, however, condition in equation (2.19) is

satisfied, then R(α) can not have a maximum at α = 0. It has a maximum at α∗ with

R′(α∗) = 0.

Q.E.D.

Proof of Corollary 2.1. The revenue of the contest designer is given by:

R(α) = k

∫ 1

m

γ−1(A(c) + α(B(c)− A(c)))F ′(c)dc

Taking the second derivative of the revenue function with respect to α we get:

R′′(α) = k

∫ 1

m

γ−1′′(A(c) + α(B(c)− A(c)))(B(c)− A(c))2F ′(c)dc

Since the cost-of-effort function is concave, γ−1 is convex so that γ−1′′ > 0. ((B(c)−
A(c))2 > 0. Combining the two, R′′(α) > 0 implying that R(α) is convex in α. Therefore,

the maximum of the revenue function is either at corner values, either α = 0 or α =
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0.5. Note that (B(c) − A(c)) can not be zero, since there is always a positive mass

of contestants exerting positive effort. Put differently, there exists a ε > 0 such that

contestants with abilities in (m,m+ ε) exert positive effort.

Q.E.D.

2.C. The Symmetric Equilibrium with p Prizes

Assume that there are 2 < p ≤ k prizes to be awarded with V1 ≥ V2 ≥ · · · ≥ Vp and k > p

contestants. Assume that the cost-of-effort of contestants is given by cγ(x), where γ is

allowed to be linear, convex or concave. Fs(a) denotes the probability that contestant

i with type a meets k − 1 competitors such that s − 1 of these competitors have lower

types than i and remaining k − s competitors have higher types than i. Fs(a) is then

given by:

Fs(a) =

(
k − 1

s− 1

)
(1− F (a))k−2(F (a))s−1

The expected utility of contestant i with cost parameter c is given by:

EU =
P∑
p=1

FpVp + η(
∑
i>p

FpFi(Vp − Vi) +
∑
i<p

FpFiλ(Vp − Vi))− Fpcγ(x)

+ η
P∑
p=1

(1−
P∑
i=1

Fi)Fpλ(0− Vp)

+ (1−
P∑
i=1

Fi)cγ(x).

Substituting Λ = η(λ−1) and rearranging the terms, the expected utility of contestant

i becomes:

EU =
P∑
p=1

FpVp − cγ(x)

− Λ

{
P∑
i<p

FpFi(Vp − Vi) +
P∑
i=1

Fp(1−
P∑
i=1

)Vp

}
.

Rearranging the terms, one gets:

EU = (1− Λ)
P∑
p=1

FpVp + Λ

{
P∑
p=1

F 2
p Vp +

P∑
i<p,p=2

2VpFp
∑
i

F1

}
− cγ(x).
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The maximization problem of contestant i reads:

max
x

(1− Λ)
P∑
p=1

FpVp + Λ

{
P∑
p=1

F 2
p Vp +

P∑
i<p,p=2

2VpFp
∑
i

F1

}
− cγ(x).

First order condition becomes:

P∑
p=1

Vp

{
(1− Λ)F ′p + Λ

(
(F 2

p )′ +
∑
i<p

(2FpFi)
′

)}
= cγ−1′(x)

The equilibrium effort function of contestant i with cost parameter c whose loss-aversion

degree is smaller than 1, that is Λ ≤ 1, becomes:

b(c) = γ−1

(
p∑
s

Vs

{
(1− Λ)

∫ 1

c

−1

a
Fs(a)′da (2.40)

+Λ

∫ 1

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da

})

Whenever Λ > 1, analogous to Lemma 2.1, there exist a critical type c̃ satisfying the

following equation∑p
s=1(Fs(c̃))

2Vs +
∑p

s=2,i<s 2VsFs(c̃)Fi(c̃)∑p
s=1 Fs(c̃)Vs

= 1− 1

Λ
.

such that any contestant with c ≥ c̃ exerts zero effort in equilibrium, while contestants

with c < c̃ exert effort in equilibrium according to equation (40).

2.D. Allocation of p Prizes for Linear Costs

Assume that there are 2 < p ≤ k prizes to be awarded with V1 ≥ V2 ≥ ... ≥ Vp−1 ≥ Vp ≥ 0

and k > 2 contestants. Fs(a) denotes the probability that a contestant with type a wins

the s-th prize, given by

Fs(a) =

(
k − 1

s− 1

)
(1− F (a))k−2(F (a))s−1.
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If Λ > 1, then there exists a critical type c̃ such that in equilibrium each contestant with

c ≥ c̃ exerts 0 effort while each contestant with c < c̃ exerts effort according to

b(c) =

p∑
s

Vs

{
(1− Λ)

∫ c̃

c

−1

a
Fs(a)′da

+Λ

∫ c̃

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da

}
.

If Λ ≤ 1, each contestant exerts effort according to the above equation with c̃ = 1.

Denote the coefficient of Vs by As:

As =

{
(1− Λ)

∫ c̃

c

−1

a
Fs(a)′da

+Λ

∫ c̃

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da

}
.

Substituting this into the bidding function we get:

b(c) =

p∑
s=1

VsAs(c)

=

(
1−

p−1∑
i=1

Vi+1

)
A1(c) +

p∑
i=2

ViAi

= A1 +

p∑
i=2

Vi (Ai(c)− A1(c))

The desiger’s problem becomes:

max0≤Vi≤ 1
i
k

∫ c̃

m

{
A1(c) +

p∑
i=2

Vi (Ai(c)− A1(c))

}
F ′(c)dc

subject to the following p− 1 conditions:

1−
p∑
i=1

Vi > V2 (2.41)

V2 > V3

...

Vp−1 > Vp

Since A1 does not have a coefficient of type Vi, deleting A1 would not harm. Since the

summation is finite, it is allowed to interchange the integral and the summation signs.
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Then the maximization problem reads:

max0≤Vi≤ 1
i

p∑
i=2

{
Vi

∫ c̃

m

(Ai(c)− A1(c))F ′(c)dc

}

subject to eqaution (2.42). It is optimal to award a single first prize if and only if each

summand in the maximization problem is zero, that is∫ c̃

m

(Ai(c)− A1(c))F ′(c)dc < 0.

for each i ∈ {2, . . . , p}. Otherwise, it is optimal to award equal prizes only, due to the

linearity of the program. That is the constraints in equation (2.42) will all bind. To see

this, suppose to the contrary that there is an interior solution. WLOG assume that the

interior solution is (σ, ς, τ, 0, . . . , 0) ∈ [0, 1]p, where σ > ς > τ and σ + ς + τ = 1. For

the sake of easiness denote Gi :=
∫ c̃
m

(Ai(c)− A1(c))F ′(c)dc > 0. Since this allocation

is optimal, and σ, ς, τ are all positive it means that G4 is positive(otherwise it would

be optimal to transfer the weight τ to σ and ς). Since τ > 0, G2 should be greater

than both G3 and G4 (otherwise it would be optimal to transfer the weight τ to σ

and ς). But then τ should take the biggest value it could take, which is in this case 1
3

(otherwise(σ, ς, τ, 0, . . . , 0) would not be optimal). Applying the same reasoning to both

σ and ς, we conclude that σ = ς = τ = 1
3
. In order to obtain the optimal prize allocation

one needs to evaluate the objective function only on the boundary values, namely on the

set {(1, 0, . . . , 0), (1
2
, 1

2
, 0, . . . , 0), . . . , (1

p
, 1
p
, . . . , 1

p
)} and take the allocation which gives the

maximum value. It is optimal to award 2 ≤ r ≤ p equal prices if and only if

r = arg maxj∈2,...,p

1

j

j∑
i=2

{∫ c̃

m

(Ai(c)− A1(c))F ′(c)dc

}
.

2.E. Allocation of p Prizes for Convex or Concave Costs

Assume that there are 2 < p ≤ k prizes to be awarded with V1 ≥ V2 ≥ ... ≥ Vp−1 ≥ Vp ≥ 0

and k > 2 contestants. As before, Fs(a) denotes the probability that a contestant with

type a wins the s-th prize, given by

Fs(a) =

(
k − 1

s− 1

)
(1− F (a))k−2(F (a))s−1.
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Whenever Λ > 1, there exists a critical type c̃ satisfying the following equation∑p
s=1(Fs(c̃))

2Vs +
∑p

s=2,i<s 2VsFs(c̃)Fi(c̃)∑p
s=1 Fs(c̃)Vs

= 1− 1

Λ
.

such that any contestant with c ≥ c̃ exerts zero effort in equilibrium, while contestants

with c < c̃ exert effort in equilibrium according to

b(c) = γ−1

(
p∑
s

Vs

{
(1− Λ)

∫ c̃

c

−1

a
Fs(a)′da

+Λ

∫ c̃

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da

})

Note that c̃ = 1 whenever Λ ≤ 1. Denote the coefficient of Vs by As:

As =

{
(1− Λ)

∫ c̃

c

−1

a
Fs(a)′da

+Λ

∫ c̃

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da

}
.

Substituting this into the optimal effort function we get:

b(c) =γ−1

(
p∑
s=1

VsAs(c)

)

= γ−1

((
1−

p−1∑
i=1

Vi+1

)
A1(c) +

p∑
i=2

ViAi

)

= γ−1

(
A1 +

p∑
i=2

Vi (Ai(c)− A1(c))

)

The desiger’s problem becomes:

max0≤Vi≤ 1
i
k

∫ c̃

m

γ−1

(
A1(c) +

p∑
i=2

Vi (Ai(c)− A1(c))

)
F ′(c)dc

subject to the following p− 1 conditions:

1−
p∑
i=1

Vi > V2 (2.42)

V2 > V3

...

Vp−1 > Vp
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So that the desiger’s revenue is:

R(V2, · · · , Vp) = k

∫ c̃

m

γ−1

(
A1(c) +

p∑
i=2

Vi (Ai(c)− A1(c))

)
F ′(c)dc

For the designer it is optimal to allocate the total prize sum into a single first one only

if the partial derivatives ∂R
∂Vh

(V2, · · · , Vp) ≤ 0 for each h ∈ {2, · · · , P}. Thus, a sufficient

for the optimality of multiple prizes is given by:

∫ c̃

m

γ−1′
(
A1 +

P∑
i=2,i 6=h

Vi(Ai − A1)

)
(Ah − A1)dF ′(c)dc > 0,

for each h ∈ {2, · · · , P}.
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Chapter 3

Cooperation in indefinitely

repeated Games of Strategic

Complements and Substitutes

3.1. Introduction

The study of cooperation and its determinants has attracted a great deal of attention

in the literature. It is well-known, for instance, that in indefinitely repeated games,

cooperation can be supported in equilibrium if the discount factor is sufficiently high

(Friedman (1971)). Not much is known, however, about how the strategic environment—

whether actions are strategic complements or substitutes—influences cooperative behav-

ior in indefinitely repeated games. Strategic complementarity refers to the property

that best-response functions are upward-sloping, whereas under strategic substitutabil-

ity best-response functions are downward-sloping.5 The distinction is relevant in several

applications. For example, depending on whether firms in oligopolistic markets with

homogeneous goods are engaged in price or quantity competition, actions are strategic

complements or substitutes, and vice versa in markets with complementary goods. Also,

depending on whether skills of members in teams are complementary or substitutable,

efforts of team members are strategic complements or substitutes. Moreover, depending

on whether the production of a public good is characterized by increasing or decreasing

returns, contributions are strategic complements or substitutes. We study in an exper-

iment whether in indefinitely repeated games strategic complements or substitutes are

more conducive to cooperative behavior.

In our experiment, pairs of subjects play games with an indeterminate final period

that feature either strategic complementarity or strategic substitutability (borrowed from

Potters and Suetens, 2009), henceforth referred to as PS. Across the two treatments, sev-

eral variables are kept constant, namely, the actions and payoffs in the Nash equilibrium

of the stage game and in the symmetric joint-payoff maximum, the optimal defection

5A game is characterized by strategic complements (substitutes) if ∀i, j and i 6= j: ∂2π/∂xi∂xj >
0 (< 0), implying that the best-response functions are upward- (downward-) sloping (see Topkis (1978);
Bulow et al. (1985); Fudenberg and Tirole (1984)).

39



Chapter 3: Cooperation in indefinitely repeated Games of Strategic Complements and
Substitutes

payoff and the absolute value of the slope of the stage-game best-response function.6

Subjects know that after each period the game proceeds to a next period with a contin-

uation probability of 0.9. In order to allow for learning across games, subjects play at

least 20 repeated games. After a repeated game ends, players are randomly re-matched

to play another repeated game with the same continuation probability. The treatments

are designed so that cooperation at the joint-payoff maximum can be sustained as a

subgame-perfect Nash equilibrium. In particular, the treatments have the same critical

discount factor above which such “full” cooperation is supported by e.g. a grim trigger

strategy.

On average, choices in our experiment do not differ significantly between the strategic

complements and substitutes treatments. However, the aggregate data mask two coun-

tervailing results that are in line with two distinct sets of studies. The first of these results

is that the percentage of choices at the joint-payoff maximum is significantly higher un-

der strategic substitutes than under strategic complements. This result fits well with the

notion that strategic risk related to cooperation at the joint-payoff maximum is lower

under substitutes than under complements. Recent theoretical and experimental studies

on indefinitely repeated prisoner’s dilemma games show that strategic risk is an impor-

tant determinant of behavior. In particular, Blonski et al. (2011) formalize the intuition

that cooperation gets riskier, and thus less likely, the more it hurts to cooperate if the

partner defects (that is, the lower the “sucker” payoff). In particular, they propose a

threshold for the discount factor in an indefinitely repeated game above which coopera-

tion at the joint-payoff maximum is supported in equilibrium, which is higher than the

standard threshold based on e.g. grim-trigger strategies (see also Blonski and Spagnolo

(ress)). Blonski et al. (2011) and Dal Bó and Fréchette (2011) provide experimental ev-

idence showing that this threshold is necessary for cooperation in a prisoner’s dilemma

to increase to very high levels.

The second result in our experiment is that choices of subjects in pairs that do not

succeed in cooperating at the joint-payoff maximum tend to be lower, so less coopera-

tive, under strategic substitutes than under strategic complements. This finding squares

well with theoretical and experimental findings on the differential effects of strategic

substitutes and complements on cooperation in the presence of heterogeneous player

types. Indeed, if a cooperator is matched with a best-responder, the aggregate outcome

in a pair will be less cooperative under strategic substitutes than under complements

(Haltiwanger and Waldman, 1991, 1993; Camerer and Fehr, 2006). The reason is that a

6To be precise there are three differences between our setting and PS. While they have a finite
game with 30 periods with fixed matching, we have repeated supergames with random matching across
supergames. Moreover, while PS implement games with positive and negative externalities (with no
reported significant difference between the two) we only implement games with positive externality.
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best-response to a cooperative choice is less cooperative under strategic substitutes than

under complements in the sense that it deviates less from the static Nash equilibrium

in the former than in the latter case.7 Experimental evidence for this intuition in the

context of a “long” finitely repeated dilemma game is provided by PS.8

The remainder of this paper is organized as follows. In Section 2 we introduce the

experimental design and procedures. In Section 3 we develop the conjectures concerning

predicted behavior in our experiment, focusing on the comparative static predictions

between the treatments with complements and substitutes. In Section 4 we present the

experimental results. In Section 5 we summarize and discuss our findings in the light of

the existing literature.

3.2. Experimental Design and Procedures

3.2.1. Experimental Design

Our experiment has two treatments: one where choices are strategic complements (Comp)

and another where choices are strategic substitutes (Subs). In each treatment, subjects

play an indefinite repetition of the same stage game. The stage game has a unique

and Pareto dominated Nash equilibrium and a symmetric socially efficient (joint payoff

maximizing) outcome (JPM). The payoffs in each treatment are determined according

to the following payoff functions (borrowed from PS):

πComp
i (xi, xj) = −28 + 5.474xi + 0.01xj − 0.278x2

i + 0.0055x2
j + 0.165xixj, (3.1)

πSubs
i (xi, xj) = −28 + 2.969xi + 2.515xj − 0.082x2

i + 0.023x2
j − 0.0485xixj. (3.2)

The coefficients in the payoff functions are chosen in order to ensure a fair comparison be-

tween the two treatments. First, in both treatments, the stage game has the same Nash

equilibrium and the same JPM outcome. That is, the positions of the Nash equilibrium

and the JPM choice are the same in the two treatments. Second, the payoffs correspond-

ing to the Nash equilibrium and the JPM are the same across the two treatments. Third,

the payoff achieved by best responding to JPM play of the matched player, referred to

7Note that, in contrast to theory, the estimated response functions in the two treatments have the
same positive sign, but it still holds that the slope in the case of complements is larger than the one in
the case of substitutes.

8See Haltiwanger and Waldman (1985) and Fehr and Tyran (2008) for applications where aggregate
outcomes depend on the strategic environment if individuals are heterogeneous in the rationality of their
expectations.
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as the defection payoff, is the same in the two treatments.9 Lastly, the absolute value of

the slopes of the best-response curves are the same in the two treatments to guarantee

that the same speed of convergence is generated by the best-response dynamics. Table

4.1 summarizes the main theoretical benchmarks of our design.

Table 3.1: Theoretical Benchmarks

Comp Subs

ChoiceNash 14.0 14.0

ChoiceJPM 25.5 25.5

ΠNash 27.71 27.71

ΠJPM 41.97 41.97

ΠDefect 60.14 60.14

Slope of reaction function 0.30 -0.30

Notes: This table shows the theoretical benchmarks regarding choices and payoffs in the ex-
periment.

In order to allow for learning, in our experiment subjects played a series of one of

the two games described above. We refer to each repeated game, that is, each sequence

of periods determined by the continuation probability of 0.9, as a match. Once a match

ended and depending on the time left, another one started. In each session, subjects

participated in as many matches as possible such that at least 20 matches were played.

If at least 20 matches had already been played, a session ended after one and a half

hours of play. Subjects played with the same partner throughout a match. Once a

match ended, subjects were randomly re-matched with another subject.

By using the payoff functions given in (3.1) and (3.2), we keep several actions and

payoffs constant across treatments. We felt the same should be done with respect to the

sequence of matches and their respective lengths. At the same time, because of possible

order effects, we did not only want to have one sequence of matches to be played in each

of the two treatments. We therefore decided to have five different draws of the lengths

of matches prior to the start of the experiments, each of which was administered in one

session for each of the two treatments Comp and Subs.10 The length of each match in a

draw was determined randomly with the continuation probability of 0.9. Figure 3.15 in

the Appendix shows the distribution of realized match lengths across all five draws.11

9The combination of the second and third condition mentioned above has as the consequence that
payoffs on the best-response function are the same in the two treatments.

10For instance, under draw number 1, the randomly determined lengths of the matches played was:
11, 5, 9, 5, 18, 33, 7, 7, 5, 12, 4, 16, 11, 1, 5, 4, 23, 9, 14, 6, 6, 10, 2, 7, 1.

11In an indefinitely repeated game with continuation probability δ = 0.9, the expected number of
periods in each match is 10.
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Since there is always the possibility of continuing to a next round, the randomiza-

tion generates a game that is strategically equivalent to an indefinitely repeated game.

In particular, the continuation probability δ is equivalent to the discount factor in an

indefinitely repeated game assuming that within the time slot of an experiment, there is

no discounting (Roth and Murnighan (1978)).

3.2.2. Experimental Procedures

The experiment consists of 10 sessions (five for each of the two treatments Comp and Subs)

that were conducted at CentERlab at Tilburg University during September-October

2011.12 A total number of 160 students participated in the experiment. Participants

were recruited through an email list of students who are interested in participating in

the experiments. In each session, 16 subjects interacted anonymously in a sequence of

matches, that is, indefinite repetitions of the same stage game. In each session subjects

participated in between 20 and 25 matches. Each session lasted not more than two hours

(including the time to read the instructions and payment of the subjects).

All participants were given the same instructions (see Appendix A). At the beginning

of each match, subjects were randomly paired with each other. During a match, subjects

played with the same partner. The matching rule was explained clearly before the

experiment started. The identity of the partners was not revealed to subjects. It was

explained to the subjects that their final earnings depended on their own choices and the

choice of the matched participants. The subjects were asked to choose a number between

0.0 and 28.0 (up to one digit after the comma) in each round of a match. Subjects were

provided an earnings calculator on the computer screen enabling them to calculate their

earnings in points for any combination of hypothetical choices, and a payoff table for

combinations of hypothetical choices that are multiples of two (see Table 3.7 and Table

3.8).

After choices were submitted in each round, subjects were informed about whether

the match would continue to a next round or not. In the case the game continued to a

next round, subjects received the message “The match continues to the next round.” on

the computer screen. In the case the match ended, subjects received the message “The

match is over.” on the computer screen. Once a match ended, another match would

begin, depending on the time available. Moreover, after each round of a match the

subjects were provided with information of the previous round on the screen, namely

their own choice and earnings and the matched partner’s choice and earnings.

12We used the experimental software toolkit Z-Tree to program and conduct the experiment (see
Fischbacher (2007a).)
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After the subjects finished reading the instructions, we explained to them that the

experiment itself would proceed for about 1.5 hours.

The payoffs in the experiment was expressed in points. At the end of the experiment,

the sum of a subject’s earnings in points in all rounds of all matches were converted into

Euro at the exchange rate of 480 points = 1 Euro, and privately paid to subjects. The

average earnings in the experiment was 16.45 Euro.

3.3. Conjectures

The first conjecture builds on the predictions of the standard theory of indefinitely re-

peated games. Based on simple grim-trigger strategies, this theory predicts that cooper-

ation can be supported as a subgame perfect Nash equilibrium (SPNE) if the following

condition holds:
ΠJPM

1− δ ≥ ΠDefect +
δΠNash

1− δ . (3.3)

The left-hand side of (3.3) is the discounted sum of payoffs from cooperation, while the

right-hand side is the discounted sum of payoffs from a one-time deviation followed by

Nash equilibrium play forever after. By design, the JPM payoff, the defection payoff,

and the static Nash equilibrium payoff are the same in both treatments. Rearranging

condition (3.3) and using the numbers given in Table 4.1, we get

δ ≥ δ :=
ΠDefect − ΠJPM

ΠDefect − ΠNash

=
60.14− 41.94

60.14− 27.71
= 0.56 (3.4)

for both treatments. We thus conclude that the critical discount factor above which

cooperation at the joint-payoff maximum (full cooperation) is supported by a grim-

trigger strategy is the same in both treatments.13, 14 This leads to our first conjecture.

SPNE Conjecture. The full cooperation rate should be the same in Subs and Comp.

The second conjecture takes into account differences in relative riskiness of coopera-

tion between the two treatments. Inspecting the payoffs in Subs and Comp, one notices

that if one player plays fully cooperatively, while the other player in the market defects

13The range of actions that Pareto-dominate the static Nash equilibrium, and thus also the range of
actions that can be sustained in equilibrium in an indefinitely repeated game, is larger under substitutes
than under complements. This can be seen in Figure 3.10 in the Appendix that shows the iso-payoff
contours in both cases. Given the findings of Gazzale (2009), we did not expect that this difference
would lead to differences in the extent to which subjects succeed in fully cooperating. It may lead to
larger variability in actions under substitutes than under complements, though.

14However, note the following. Any feasible and admissible average payoff vector above the NE of the
stage game can be supported as a SPNE provided that δ is sufficiently high. This area of this region for
Comp is 386.648, while for Subs it is 403.246.
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Table 3.2: A general and reduced PD games for the two treatments

(a) (b) (c)

A general PD game The reduced PD game for Comp The reduced PD game for Subs

C D

C c, c a, b

D b, a d, d

C D

C 41.94, 41.94 5.89, 60.14

D 60.14, 5.89 34.90, 34.90

C D

C 41.94, 41.94 10.71, 60.14

D 60.14, 10.71 18.17, 18.17

Notes: This table illustrates the payoff matrices for a general PD game and the reduced PD games for
Comp and Subs treatments.

optimally, the cooperating player’s (“sucker”) payoff is lower with complements than with

substitutes. In addition, the payoff players get if they both optimally defect, is lower in

Subs than in Comp. Intuitively, these two forces make it less attractive, because relatively

more risky, to choose actions that maximize joint payoffs in Comp than in Subs.

Recently, this intuitive idea received formal support in Blonski et al. (2011). These

authors suggest an axiomatic approach to equilibrium selection in indefinitely repeated

prisoner’s dilemma (PD) games. They show that a set of five axioms leads to a dis-

count factor δ∗ that is strictly larger than the standard discount factor δ in the SPNE

Conjecture and that, more importantly for our purposes, reflects the influence of the

sucker payoff on the incidence of fully cooperative play.15 In particular, given a PD stage

game of the form shown in Panel (a) in Table 3.2 with b > c > d > a and 2c > b + a,

Blonski, Ockenfels and Spagnolo (2011, Proposition 2) show that their five axioms im-

ply the threshold δ∗ = (b − c + d − a)/(b − a) above which a cooperation equilibrium

is predicted to be played in the indefinitely repeated PD. Note that this threshold fea-

tures the sucker payoff a, while the threshold of the SPNE Conjecture does not (there

δ = (b − c)/(b − d)). Note also that ∂δ∗/∂a = − (c− d) / (a− b)2 < 0, so that a lower

sucker payoff increases the threshold above which cooperation should be observed. Put

differently, the lower the sucker payoff, the smaller the range of discount factors for which

a cooperation equilibrium is selected.

Blonski et al. (2011) develop their approach in the context of a standard 2×2 PD

game. Our stage game, however, has many more than just two actions. Still, we believe

that the intuitive idea that a lower “sucker” payoff and higher “mutual optimal defection”

payoff should ceteris paribus lead to less full cooperation is also relevant in the context

of our stage games. A conjecture that translates Blonski et al’s approach to our context

15The five axioms in Blonski et al. (2011) are called (1) positive linear payoff transformation invariance;
(2) δ-monotonicity, (3) boundary conditions (which is the crucial axiom that highlights the influence of
the sucker payoff on the incidence of cooperation); (4) incentive independence; and (5) equal weight.

45



Chapter 3: Cooperation in indefinitely repeated Games of Strategic Complements and
Substitutes

can be generated if one is willing to make the simplifying assumption that the action

space of our stage games consist of just two choices, say Choice C = ChoiceJPM and

D = ChoiceDefect. Using the payoff functions given in (3.1) and (3.2), these two choices

lead to the two games shown in Panels (b) and (c) in Table 3.2.16 It follows that δ∗Comp =

0.870 and δ∗Subs = 0.518 , so that full cooperation can be sustained for a larger range of

discount factors in treatment Subs than in treatment Comp.17

An alternative concept leading to the same comparative static prediction is the basin

of attraction of a cooperative strategy in comparison to a defecting strategy (see Dal Bó

and Fréchette, 2011). To understand the idea of the basin of attraction, assume (again,

a strong assumption) that players either play “tit for tat” (a cooperative strategy) or

“always defect” (a defective strategy) and nothing else in the repeated PD game and

that this is common knowledge. Then a player needs to determine which of these two

strategies generates the higher expected payoff given the belief that with probability p

the other player plays “tit for tat” and with probability 1− p plays “always defect”. The

basin of attraction of the cooperative strategy is the set of beliefs p for which playing this

strategy gives a higher expected payoff than the defective strategy. In the context of the

general game shown in Panel (a) in Table 3.2, the expected payoff for the cooperative

strategy is equal to

C(a, c, d, δ) = p(c+ δc+ δ2c+ ...) + (1− p)(a+ δd+ δ2d+ ...) (3.5)

= 1/(1− δ) (a− aδ + dδ − ap+ cp+ apδ − dpδ) ,

while the expected payoff for the defecting strategy is equal to

D(a, b, d, δ) = p(b+ δd+ δ2d+ ...) + (1− p)(d+ δd+ δ2d+ ...) (3.6)

= 1/(1− δ) (d+ bp− dp− bpδ + dpδ) .

Equating the two expressions in (3.5) and (3.6) gives the threshold p∗ above which playing

the cooperating strategy is the payoff maximizing choice. That is, the lower p∗ the larger

the basin of attraction of the cooperative strategy and the more likely it is that subjects

will choose to fully cooperate. For the games shown in Panel (b) and (c) in Table 3.2,

we find p∗Comp = 0.391 and p∗Subs = 0.038 , so that, again, full cooperation is predicted to

emerge for a larger range of beliefs in Subs than in Comp.18 The lines of reasoning based

16The choice C = ChoiceJPM is equal to 25.5 in both treatments, while D = ChoiceDefect = 17. 42
in Comp and D = ChoiceDefect = 10. 64 in Subs.

17In case the two choices are C = ChoiceJPM = 25.5 and D = ChoiceNash = 14 in both treatments,
we find again δ∗Comp = 0.7834 and δ∗Subs = 0.664 , and so, again, δ∗Comp > δ∗Subs.

18If the 2×2 PD games are generated using the actions mentioned in footnote 17, we find p∗Comp = 0.784
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on the influence of the sucker payoff and the basin of attraction lead to:

Riskiness Conjecture. The full cooperation rate should be higher in Subs than in

Comp.

The third conjecture is based on the literature that studies the interaction between

the strategic environment (complements versus substitutes) and heterogeneity of players

(Haltiwanger and Waldman (1991), Camerer and Fehr (2006)), as well as its applica-

tion to repeated-game experiments (see PS). The intuition goes as follows. In games of

strategic complements a change in the matched player’s choice gives a payoff-maximizing

player an incentive to move in the same direction, while in games of strategic substitutes

the incentive is to move in the opposite direction. Given that several experiments have

shown that some people are (conditionally) cooperative in the sense that they try to

induce cooperation and follow it when established by others, even when there is no fu-

ture interaction, (see Fehr and Fischbacher (2002), Clark and Sefton (2001) and Reuben

and Suetens (2009)), it is plausible to assume that players are heterogeneous in their

cooperativeness and defection strategies. Consider, for example, a cooperative player

who is matched with a defector in the above-described games of complements and sub-

stitutes. If the cooperative player makes a cooperative choice (higher than the static

Nash equilibrium), and the matched defector is an optimal defector in the sense that he

best-responds to this move, then, in sum, choices will be higher (more cooperative) in

Comp than in Subs. This is because in Comp, the best-response to a cooperative move

is to (partly) follow the move and make a higher choice as well, whereas in Subs, the

best-response is to make a less cooperative choice. This mechanism may facilitate coop-

eration in Comp and may hamper it in Subs. In addition, a similar mechanism occurs

when a cooperative player is matched with a spiteful defector who aims at maximizing

the payoff difference between himself and the cooperator. In order to employ the same

level of punishment (in payoff terms), a spiteful defector must choose much lower choices

in the Subs treatment than in the Comp treatment. So here as well, choices will, on

average, be higher, e.g. more cooperative in Comp than in Subs. PS provide evidence for

this intuition in the context of a finitely repeated game. We summarize this intuition in

the following conjecture.

Heterogeneity Conjecture. In pairs that do not succeed in joint full cooperation,

choices should be higher (i.e. more cooperative) in Comp than in Subs.

and p∗Subs = 0.664, and so again p∗Comp > p∗Subs.
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3.4. Experimental Results

In this section we describe our main results. We analyze data from matches 1-20 for

which we have observations in all sessions.

Averaged over all subjects, rounds and matches, the mean choice is 19.09 in treatment

Subs and 18.70 in treatment Comp. In the last 10 matches the mean choice in the Subs

treatment is 20.12 and that in the Comp treatment is 19.87.19 The average choice is thus

roughly the same in the two treatments.

Figure 3.1: Evolution of Average Choices
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Notes: This figure shows the evolution of individual choices across matches for the treatments.

Figure 3.1 illustrates the evolution of average choices over time under strategic com-

plements and strategic substitutes. In both treatments, the average choice is increasing

over the matches. However, there is no clear difference between the two treatments.20

To formally quantify the difference between the two treatments, and to test whether

it is statistically significant, we estimate the effect of strategic complementarity on the

individual choice. We do so by regressing the choice of an individual on a treatment

dummy, and clustering standard errors at the session level (results are reported in col-

umn (1) of Table 3.5). The regression results confirm that the difference between the two

treatments is small in size, and not statistically significant (marginal effect is −0.365,

p = 0.679).21,22

19The summary statistics for average choice is presented in Table 3.10 in the Appendix.
20There is also no significant difference in payoffs between the two treatments as reported in Table

3.9 in the Appendix.
21The estimated marginal effect of strategic complementarity on individual choice becomes −0.386

with p = 0.505 when we control for the match and the interaction between treatment and match. No
significant differences are obtained in payoffs either. This can be seen in column (2) of Table 3.5.

22Mann-Whitney-U tests based on independent observations yield similar results, both when the
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Figure 3.2: Distribution of Choices
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Notes: This figure shows the distribution of individual choices in the experiment.

Some properties of the data might be hidden when looking at aggregates. To analyze

the data in more detail, in a next step, we present the distribution of choices for strategic

substitutes and complements. Figure 3.2 shows that choices in the Subs treatment are

spread over the whole interval, while choices in the Comp treatment are somewhat more

concentrated. Moreover, the modal choice in both treatments is a choice at or very

close to the JPM level of 25.5. This is particularly accentuated in treatment Subs. To

illustrate, in Subs, almost 30% of the choices are at or very close to the JPM level of

25.5, whereas in Comp we observe about 15% of such choices.

To further explore potential differences between Subs and Comp, we distinguish

“fully-cooperative” and “non-fully cooperative” choices. We define a choice to be fully-

cooperative if it lies within the interval [25, 26], where 25.5 is the JPM choice in both

treatments. We refer to a choice as non-fully cooperative if it lies outside the range

[25, 26].23

The left-hand panel of Figure 3.3 illustrates for both treatments the share of fully

cooperative choices by match (so over time). From this graph it becomes clear that the

share of fully cooperative choices is higher in Subs than in Comp. In addition, the share

of fully cooperative choices increases in both treatments, but more so in Subs than in

Comp. In the last 10 matches, the percentage of fully cooperative choices is around 40%

average choice is based on all matches, or the last 10 matches (p = 0.750 in both cases).
23The choice of such a range is to some extent arbitrary, and one may argue that choices above 26

are also fully cooperative. For example, 28, which is the maximum choice possible, can serve as a focal
point for subjects to coordinate on (almost) full cooperation. Enlarging the fully-cooperative interval
to [25, 28], does not affect any of our qualitative results in what follows. Choices above 26 correspond
to 0.68 % of all choices in the experiment.
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Figure 3.3: Cooperative vs Non-Cooperative Behavior
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Notes: This figure shows the evolution of cooperative and non-cooperative behavior. The left-
hand panel depicts the evolution of full cooperation rate across matches and the right-hand
panel depicts the evolution of average non-fully cooperative choices across matches.

in Subs, while it is around 25% in Comp.24

The right-hand panel of Figure 3.3 depicts the evolution over matches of averages

of non-fully cooperative choices (those that fall outside the interval [25, 26]). Here we

observe that the average choice of subjects is, overall, higher in Comp than in Subs.

So it seems the effect of strategic complementarity on behavior switches—behavior is

more cooperative because choices are higher—when we focus on non-fully-cooperative

choices. To illustrate, averaged over subjects, rounds and matches, the mean non-fully

cooperative choice is 16.65 in the Subs treatment and it is 17.59 in the Comp treatment.

In the second half of the experiment, the average non-fully cooperative choice is 16.85 in

Subs and 18.33 in Comp.25

In sum, although we do not observe a clear difference between the two treatments

at the aggregate level, analyzing fully cooperative and non-fully cooperative behavior

separately suggests that, overall, behavior is driven by two countervailing forces. On the

one hand, subjects make choices at the fully cooperative level more frequently under Subs

than under Comp. On the other hand, the average choice of subjects who do not make

fully-cooperative choices is higher under Comp than under Subs. To understand which

forces drive these two results, we analyze fully cooperative behavior in section 3.4.1 and

non-fully cooperative behavior in 3.4.2 in more detail. Secion 3.4.3 focuses on results at

the pair level.

24For an in-depth analysis of the statistical significance of these observations, see Section 3.4.1.
25For an in-depth analysis of the statistical significant, see Section 3.4.2.
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Figure 3.4: Full Cooperation Rate
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Notes: This figure shows the evolution of full cooperation rate across matches, on the left-hand
panel for the first rounds only and on the right-hand panel for all rounds.

3.4.1. Full Cooperation Rates

In this section we take a closer look at full cooperation rates, that is, choices in the

interval [25, 26] at the level of subjects. In doing so, we examine the first and all rounds

of a match separately since the cooperation rate might evolve within a match, depending

on the number of rounds in that match (see, Dal Bó and Fréchette (2011)). In addition,

in the first rounds of each match subjects are playing with a new partner so that they do

not have experience with their partners’ behavior. In this respect, subjects’ behavior in

the first round of each match is mainly driven by the fundamentals of the game they are

playing (and possibly their experiences in the previous matches) and not by the partners’

behavior.

Figure 3.4 illustrates the evolution of the full cooperation rate across matches, in

the left-hand panel for the first rounds and in the right-hand panel for all rounds. The

left-hand panel shows that in the first rounds of a match subjects make fully cooperative

choices more frequently under Subs than under Comp. In addition, the first-round full

cooperation rate follows an increasing trend in Subs, while in Comp it is more steady

across matches. The consequence is that the full cooperation rate in the first match is

almost the same for the two treatments, while towards the end of the experiment there

is a considerable difference in full cooperation rates between the two treatments. The

first-round full cooperation rate reaches the level of about 25% in the Subs treatment by

the end of the experiment while it remains around 5% in the Comp treatment.

In order to test whether these differences are statistically significant, we ran two

specifications of probit regressions where the dependent variable is a dummy referring

to a subject fully cooperating or not. In the first specification shown in Table 3.3 we
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Table 3.3: Regression results on full cooperation

First rounds All rounds

(1) (2) (3) (4)

VARIABLES FullCoopit FullCoopit FullCoopit FullCoopit

Comp −0.127*** −0.050*** −0.115*** −0.178***

(0.031) (0.022) (0.042) (0.043)

Round 0.004***

(0.002)

Comp*Round 0.004**

(0.002)

Match 0.005*** 0.016***

(0.002) (0.002)

Comp*Match −0.007*** 0.001

(0.003) (0.004)

Observations 3,200 3,200 33,024 33,024

Notes: This table reports marginal effects from probit regressions with delta-method standard
errors (in parentheses) clustered at the session level. The dependent variable is a dummy which
is equal to 1 if the choice is fully cooperative and 0 otherwise. ∗∗∗ (∗∗) [∗] indicate that the
estimated coefficient is significant at the 1% (5%) [10%] level. Specifications (1) and (2) are
based on observations from the first rounds of matches only and specifications (3) and (4) are
based on all observations.

include as an independent variable a treatment dummy. In the second specification,

next to the treatment dummy, we control for the match, and the interaction between

treatment and match. As shown in Table 3.3, in both specifications the treatment

dummy has a negative sign—the full cooperation rate in Subs is thus lower than the one

in Comp—and is statistically significant. The estimated marginal effect is −0.127 and

−0.50 respectively.26 In addition, column (2) shows that the first-round full cooperation

rate significantly increases over the matches in Subs (marginal effect is 0.005, p ≤ 0.001),

but not so in Comp (marginal effect is -0.002, p ≤ 0.001).

Next, we focus on the right-hand panel of Figure 3.4 and the remainder of Table 3.3.

As illustrated in the figure, there is again a clear difference between the two treatments

in the full cooperation rate. In contrast to the first rounds, the full cooperation rate now

increases over matches in Comp as well. The full cooperation rate raises up to about

26The p-values in Mann-Whitney-U tests based on sessions averages are 0.016 if all matches are taken
into account and 0.075 if only matches 11-20 are taken into account.
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Figure 3.5: Average Non-Fully Cooperative Choices
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Notes: This figure shows the evolution of non-fully cooperative choices (i.e. choices outside
the range [25, 26]) across matches, on the left-hand panel for the first rounds only and on the
right-hand panel for all rounds.

25% in Comp and up to about 45% in Subs.

The results of probit regressions, which we report in columns (3) and (4) of Table

3.3, indicate that the treatment effects are again statistically significant. Moreover, as

shown in column (4), the full cooperation rate increases significantly over the matches

in both treatments (marginal effect is 0.016, p = 0.001).

Summarizing, we find significantly more initiation of full cooperation at the beginning

of a new match as well as more fully cooperative choices in general in Subs than in Comp.

This result is in line with the “riskiness-of-cooperation” conjecture.

3.4.2. Non-Fully Cooperative Behavior

In this section we analyze the effect of strategic complementarity on non-fully-cooperative

behavior. In doing so, we focus on those data points that are not in the fully cooperative

range of [25, 26]. Figure 3.5 depicts the evolution of the average non-fully-cooperative

choice over matches, in the left-hand panel for the first rounds and in the right-hand

panel for all rounds of a match.

The figure in the left-hand panel shows that in the first rounds of the matches there is

no visible difference in non-fully-cooperative behavior between the two treatments. The

figure also shows that in both treatments the average non-fully cooperative choice in the

first rounds is initially above the static Nash equilibrium choice of 14 and increases over

the matches. As shown in Table 3.4 presenting results from linear regressions where the

average non-fully-cooperative choice is regressed on a treatment dummy, the treatment

effect is small and not significant. In addition, as shown in column (2) of this table, the
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Table 3.4: Regression results on non-fully cooperative choices

First rounds All rounds

(1) (2) (3) (4) (5)

VARIABLES Choiceit Choiceit Choiceit Choiceit Choiceit

Comp 0.007 0.175 0.999 −2.830*** −2.968***

(0.546) (0.417) (0.911) (0.269) (0.462)

Choicejt−1 0.583*** 0.582***

(0.031) (0.028)

Comp*Choicejt−1 0.202*** 0.192***

(0.033) (0.031)

Match 0.109*** 0.017

(0.018) (0.033)

Comp*Match −0.019 0.029

(0.032) (0.038)

Constant 17.016*** 15.909*** 16.334*** 6.607*** 6.453***

(0.404) (0.361) (0.773) (0.171) (0.397)

Observations 2,823 2,823 25,061 22,238 22,238

R-squared 0.001 0.021 0.010 0.444 0.446

Notes: This table reports results from linear regressions with standard errors (in parentheses)
clustered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant
at the 1% (5%) [10%] level. Specifications (1) and (2) are based on observations from the first
rounds of matches only and specifications (3), (4) and (5) are based on all observations.

average choice significantly increases over the matches.27

Next, we consider average non-fully-cooperative choices across all rounds. The evoloution

of these choices across matches is shown in the right-hand panel of Figure 3.5.28 Here, a

different behavior emerges. When averages are taken across all instead of just the first

rounds of a match, the average non-fully-cooperative choice is higher in Comp than in

Subs, p = 0.301, see column (3) in Table 3.4).

Next we analyze the adjustments across rounds. During a match, subjects observe

the past choice(s) of the matched subject and are likely to adjust their own behavior.

27We test whether average choice of subjects who do not play fully cooperatively is the same in the
two treatment by using a two-sided Mann-Whitney-U Test. The p-value of the null hypothesis that
the average non-fully cooperative choice is the same in the two treatments is 0.25, for both the entire
experiment and the second half of the experiment. So we fail to reject the null hypothesis.

28The right-hand panel of Figure 3.5 is the same as the right-hand panel of Figure 3.3.
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If at least some of the subjects (noisily) best-respond it should be the case that in

Comp the estimated response function has a higher slope than in Subs (see Table 4.1).

Columns (4) and (5) of Table 3.4 report estimates of the observed response functions.

The reported results come from linear regressions where the choice of a player is regressed

on the choice of the matched player in the previous round (in the same match) as well

as the interaction of the other subject’s past choice and a treatment dummy. In column

(5) additional controls are included for the match and the interaction between match

and treatment. Both columns show that in both treatments subjects (partially) follow

each other, and the effect is statistically significant.29 Importantly, the extent to which

subjects follow each other is significantly greater in Comp than in Subs. To illustrate, an

increase in the choice by a subject, increases the choice of the matched subject in the

next round by 0.58 in Subs and by 0.78 in Comp. The effects are very similar when we

control for the match and the interaction between match and treatment.

The positive effect of Comp shown in column (3) of Table 3.4 in combination with

the result that the extent to which subjects follow each other is greater in Comp than

in Subs (cf. columns (4) and (5) in Table 3.4), suggest that at least some subjects try to

induce cooperation, to which others (noisily) best-respond. If a subject who increases

one’s choice above the static Nash equilibrium, for example, with the intention to move

towards full cooperation, is matched with a (noisily) best-responding subject or a spiteful

subject, choices in the pair will on average end up to be higher (more cooperative) in

Comp than in Subs, which is exactly what we observe. This is the mechanism behind

our heterogeneity conjecture.

Summarizing, when we focus on non-fully-cooperative choices, we find that behavior

is in agreement with the mechanism underlying the heterogeneity conjecture, so that the

average (non-fully-cooperative) choice tends to be higher in Comp than in Subs.

We end this section by presenting the results of regressions of treatment effects and

responses of subjects using all choices, so including those in the fully-cooperative range.

Table 3.5 summarizes the results. The first specification (in column (1)) shows the

aggregate (non-significant) treatment effect on choices. The specifications in columns

(3) and (4) show the estimated response of subjects to the matched subject’s choice,

as well as the treatment effect on this response (with and without controlling for the

match). As can be seen, the estimated responses are qualitatively similar to those shown

in Table 3.4. The size of the estimated response is larger now, because fully cooperative

choices as well as subjects responding to full cooperation by fully cooperating themselves

are included as well.

29Reaction functions being positively sloped in both treatments can be explained by endogenous
complementarity that arises when subjects use reciprocal strategies (see also PS).
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Table 3.5: Regression results on choice

(1) (2) (3) (4)

VARIABLES Choiceit Choiceit Choiceit Choiceit

Comp −0.386 −0.365 −2.421*** −2.190***

(0.557) (0.853) (0.179) (0.200)

Choicejt−1 0.743*** 0.734***

(0.012) (0.010)

Comp*Choicejt−1 0.129*** 0.126***

(0.013) (0.013)

Match 0.208*** 0.0602***

0.041 (0.015)

Comp*Match 0.001 −0.015

0.060 (0.018)

Constant 16.951*** 19.210*** 5.005*** 4.530***

(0.487) (0.703) (0.118) (0.096)

Observations 33,024 33,024 29,824 29,824

R-squared 0.043 0.001 0.604 0.607

Notes: This table reports results from linear regressions with standard errors (in parentheses)
clustered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at
the 1% (5%) [10%] level. The dependent variable is a subject’s choice in all specifications.

3.4.3. Cooperative versus Non-Cooperative Pairs

In this section we look at the experimental data from a different angle by focusing on

the evolution of choices and cooperation at the pair level within matches. To do so, we

slice up the pairs into those in which the two players succeed in maximizing joint payoff

and those in which the two players do not succeed in doing so (along the lines of PS).

We classify a pair to be collusive if both subjects choose a number in the interval [25, 26]

in at least 60% of the rounds in their individual match. This threshold may look rather

low, but if we do not choose the threshold sufficiently low, given that many pairs only

play few rounds, they would easily be classified as non-JPM pairs.30 For example, in

order to classify pairs that only play 3 rounds in total in the indefinitely repeated game

as JPM pairs if they maximize joint payoff in 2 out of 3 rounds, we need to put the

threshold below 66.66%. In any case, any of the qualitative conclusions that are made

30Figure 3.15 in the Appendix illustrates the distribution of realized match lengths in the experiment.
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Figure 3.6: JPM vs Non-JPM Pairs (60%)
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Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs
respectively on the right- and left-hand sides. A pair is referred to as JPM if both subjects
makes a choice in the interval [25, 26] in at least 60% of the rounds in their individual match.

in this section, are robust to changes in this threshold.31

Figure 3.6 illustrates the evolution of average choices over time under strategic com-

plements and strategic substitutes for JPM and non-JPM pairs respectively on the left-

and right-hand panels. This graph suggests that different choice patterns emerge between

JPM and non-JPM pairs. The left-hand panel of Figure 3.6 shows that in Subs pairs who

succeed in full cooperation in at least 60% of a match, play higher choices than those

in Comp. In the first rounds, the average choice of JPM pairs in Comp is 20, while it is

22 in Subs. As subjects gain experience over time the difference between the treatments

disappears. That is, in both treatments once subjects reach the fully cooperative level

they remain there. After round 5, the average choice in both treatments is around 25.32

The right-hand panel of Figure 3.6 illustrates the evolution of average choice of non-

JPM pairs over time. Here we observe that the average choice is higher in Comp than

in Subs, p = 0.303, see column (1) in Table 3.8). In both treatments the average choice

follows a decreasing trend over time. The estimated effect of round on the average choice

is −0.061 with p = 0.004, see column (2) in Table 3.8). In the Appendix we present

figures similar to Figure 3.6 for different thresholds of mutual cooperation, namely from

65% to 80%, where we observe that the difference between the treatments stay the same

as the one discussed in this section.

31In the Appendix, we include a number of figures in which this threshold is varied (see Figures 3.11
to 3.14).

32Table 11 summarizes the average choice for JPM and non-JPM pairs in the first and all rounds of
the first match, all matches and the last 10 matches.
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3.4.4. Learning across games

In this section we explore the effect of learning across matches. To do so, we study how

the behavior of a subject in the first round of a match is affected by (a) the behavior

of the partner in the previous match, (b) the length of the previous match, and (c) a

subject’s own behavior in the previous match (in the spirit of Dal Bó and Fréchette

(2011)). We do this in two ways. We check how the variables just mentioned affect

a typical subject’s probability to start a match fully cooperatively (i.e., by making a

choice in the interval [25,26], and how these variables affect a subject’s level of choice.

We present the results in Table 3.6).

In column (1) and (2) of Table 3.6 we report, for each treatment separately, the

results from probit regressions where the dependent variable is a dummy which equals

1 if the choice in the first round of a match is fully cooperative and 0 otherwise. In

column (3) and (4) regression results are reported where the dependent variable is a

subject’s choice in the first round of a match. In all specifications we use the same

independent variables: a dummy indicating whether or not the partner in the previous

match made a fully cooperative choice in the first round of the previous match, the length

of the previous match, and a dummy indicating whether a subject himself made a fully

cooperative choice in the very first round of the experiment.

Consider first columns (1) and (2) of Table 3.6. A subject who was matched with

someone who played fully cooperatively in the first round of the previous match is more

likely to start the current match fully cooperatively in both treatments. However, this

effect is statistically significant only in treatment Comp in which cooperation is more

risky. Furthermore, in both treatments there is a positive and significant relationship

between the length of the previous match and subjects’ likelihood of starting a match fully

cooperatively. This suggests that after a longer match, during which mutual cooperation

is more likely to develop, subjects more often take the risk to start the new match fully

cooperatively than after a shorter match. Lastly, a subject who fully cooperated in the

first round of the first match in the experiment is more likely to start a new match by

full cooperation than someone who did not start the experiment by full cooperation.

However, this result is much more pronounced and statistically significant in treatment

Subs.

Consider next columns (3) and (4) in Table 3.6 where we report the estimates from

linear regressions in which the dependent variable is a subject’s choice in the first round

of a match. We find that subjects start a match with a higher choice if the partner in

the previous match fully cooperated in the first round of the previous match, with the

effect being more pronounced in treatment Comp. Also, subjects make higher or more
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Table 3.6: Learning across matches

FullCoopit Choiceit

(1) (2) (3) (4)

Comp Subs Comp Subs

Partner cooperated in 0.065*** 0.038 1.609* 0.633

round 1 of previous match (0.016) (0.036) (0.662) (0.328)

Previous match length 0.001*** 0.001** 0.013 0.044**

(0.001) (0.001) (0.008) (0.014)

Subject cooperated in 0.053 0.271*** −0.293 4.972***

round 1 of match 1 (0.059) (0.098) (0.465) (0.911)

Constant 17.319*** 17.673***

(0.542) (0.441)

Observations 1,520 1,520 1,520 1,520

Notes: Column (1) and (2) report marginal effects from probit regressions with delta-method
standard errors (in parentheses) clustered at the session level. The dependent variable is a
dummy which is equal to 1 if the choice is fully cooperatively and 0 otherwise. Column (3)
and (4) report results from linear regression with standard errors (in parentheses) clustered at
the session level. The dependent variable is a subject’s choice. ∗∗∗ (∗∗) [∗] indicate that the
estimated coefficient is significant at the 1% (5%) [10%] level.

cooperative choices after a longer previous match, where this effect is significant only in

treatment Subs. Finally, a subject in treatment Subs makes significantly higher choices

if he had chosen a fully cooperative choice himself in the first round of the first match.

In treatment Comp, however, the effect is negative and insignificant.

To sum up, a partner’s full cooperation in the previous match and a longer previous

match increase the choice and the likelihood of full cooperation in the next match. Also,

subjects who fully cooperate in the very first round of the experiment are significantly

more likely to cooperate later in the experiment in Subs but not so in treatment Comp.

Taken together, these results suggest that subjects’ behavior is influenced by learning

across matches as well as by the nature of the game being being played (complements or

substitutes).

3.5. Summary and Discussion

In our experiment subjects play indefinitely repeated dilemma games of strategic substi-

tutes or complements. We find that the full cooperation rate (the percentage of choices
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at the joint-payoff maximum) is significantly higher under strategic substitutability than

under strategic complementarity. We show that this is because under substitutes subjects

more often take the risk to initiate full cooperation at the beginning of each repeated

game. Moreover, they do so increasingly the more repeated games they play. To illus-

trate, in the second half of the experiment, the percentage of full cooperation in the first

periods has increased to a level above 20%. In contrast, under complements, subjects

rarely take this risk, and the percentage remains at about 5% in the second half.

The result that the full cooperation rate is significantly higher under substitutes than

under complements goes against the SPNE conjecture, but is in line with the riskiness

conjecture. The riskiness conjecture takes into account the riskiness of cooperation,

referring to, loosely speaking, how much a player can lose by cooperating in case the

other player defects. In the context of this paper, with strategic substitutes it is less

risky to fully cooperate or initiate full cooperation than with strategic complements.

In this sense, our result is in line with experiments on indefinitely repeated prisoner’s

dilemma games (Blonski et al., 2011; Dal Bó and Fréchette, 2011) and on coordination

games that have shown that payoff-dominant actions are chosen less frequently if they

involve more strategic risk (Van Huyck et al., 1990; Schmidt et al., 2003).

Next, if we focus on choices of subjects who do not make choices equal to the joint-

payoff maximum, we find that, on average, choices tend to be less cooperative (lower)

under strategic substitutes than under complements. This result (although not statis-

tically significant) is in line with the heterogeneity conjecture that posits that under

heterogeneity aggregate outcomes tend to be different depending on the strategic envi-

ronment.

The latter result is in line with behavior observed in finitely repeated games of strate-

gic complements and substitutes of PS who use the same payoff functions as we do here.

However, in contrast to PS, we do not find that, in the aggregate, this leads to choices

being less cooperative under strategic substitutes than under complements. In our ex-

periment, two opposing behaviors—more frequent play of the joint-payoff maximum and

less cooperative “other” choices under substitutes as compared to complements—cancel

each other out, so that, on average, choices are not significantly different between the

two types of strategic environments.

We suggest that the difference between our results and PS is driven by a difference in

a characteristic of the game (known versus unknown end), or the combination of both.

The reasoning goes as follows. The repeated game in PS is a long finitely repeated game.

It is played with the same partner for 30 rounds, and subjects know this. In contrast, in

our experiment, subjects repeatedly play the repeated game with different partners but

subjects do not know when it will end. The fundamentals of the interactions are thus very
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different. In the repeated game of PS, full cooperation, if it occurs, is typically built up

gradually: subjects gradually increase their choice towards the level that maximizes joint

payoffs. To illustrate, it often takes around 10 rounds to get to this level. In addition,

subjects do not initiate full cooperation more frequently in the games with strategic

substitutes as compared to those with complements. In our indefinitely repeated games,

such gradual build-up is difficult to obtain: subjects do not know how long the repeated

game will last, and the expected length is smaller. As compared to PS, full cooperation

(if it occurs) hinges more on subjects taking the risk to fully cooperate in the first round

(of each repeated game). Therefore, we suspect that the higher relative risk inherent in

the games of strategic complements as compared to substitutes has played a fundamental

role in our experiment, and not so in PS.

Finally, our findings square well with Embrey et al. (2014). This paper studies in an

experiment the effect of strategic commitment on cooperation in indefinitely repeated

games of strategic complements and substitutes. Subjects choose an initial action and

a strategy (a “machine”) at the beginning of each repeated game. Treatments vary

with respect to the level of commitment, that is, the costs at which strategies can be

adjusted in each round of the repeated game. The treatments vary as well with respect

to the strategic environment, with joint payoff maximization being relatively more risky

under strategic complements than under strategic substitutes.33 Interestingly, subjects

choose more often joint-payoff maximizing actions under strategic substitutes than under

complements when the level of commitment is high, whereas the opposite holds when

the level of commitment is low. Relative risk of joint-payoff maximization thus seems to

be a dominant force when the level of commitment is high, but not so when it is low.

In summary, our findings and the findings of PS and Embrey et al. (2014) seem to

suggest that the effect of the strategic environment on cooperation in repeated games

depends on the expected “weight” the relative risk of joint-payoff maximization has on

behavior of players. In relatively short games with an unknown end and relatively large

differences in this risk, or in games with high levels of commitment, an environment of

strategic substitutes seems to be more conducive of cooperation. In long repeated games

with a known end, or in games with low commitment and relatively small differences

in this risk, less cooperation can be expected under strategic substitutes than under

strategic complements.

33The difference in minimum thresholds above which full cooperation can be sustained between the
two treatments is not as large as in our experiment, though. To illustrate, the minimum thresholds are
δ∗Comp = 0.77 and δ∗Subs = 0.58 (compared to δ∗Comp = 0.870 and δ∗Subs = 0.518 , in our experiment).
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Appendices

3.A. Instructions

You are participating in an experiment on decision making. You are not allowed to talk

or try to communicate with other participants during the experiment. If you have a

question, please raise your hand.

Description of the Experiment

In this experiment you will be asked to make a decision in several periods. You will

be randomly paired with another participant for a sequence of periods. Each sequence

of periods is referred to as a match.

The length of a match is randomly determined. After each round, there is a 90%

probability that the match will continue for at least another round. So, for instance, if

you are in round 2 of a match, the probability there will be a third round is 90 % and if

you are in round 9 of a match, the probability there will be another round is also 90%.

Once a match ends, you will be randomly paired with another participant for a new

match.

In each round you and the other participant you will be matched with (referred to as

the “other”) will be asked to choose a number between 0.0 and 28.0 (in 0.1 steps). The

following table gives information about your earnings for some combinations of your and

the other’s choice. Every participant is given the same table.

You can calculate your and the other’s earnings in more detail (for choices that are

not multiples of 2 for instance) by using the EARNINGS CALCULATOR on your screen.

By filling in a hypothetical value for your own choice and a hypothetical value for the

other’s choice you can calculate your and the other’s earnings for this combination of

choices.

Once you have made up your mind, you will enter your decision under DECISION

ENTRY and then clicking the button ENTER. In each round you have about 1 minute

to enter your decision.

Starting with round 2 of a match, you will be given information about the previous

round on your screen. That is, you will be informed about your own and the other

participant’s choice and your own earnings in points in the previous round.

The identity of the other participants you will be matched with will be unknown to

you.

At the end of the experiment you will be paid your earnings in cash and in private.

Your total earnings in points are the sum of your earnings in points over all periods
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of all matches of the experiment. Your earnings in points will be converted into EUR

according to the following rate: 300 points = 1 EUR.

Summary

The experiment will consist of a sequence of matches. Each match will consist of a

sequence of periods. The number of periods of each match is determined randomly by

the computer. After each round, with probability 90% the match continues to another

round. You will interact with the same participant for an entire match. After a match

is finished, you will be randomly matched with another participant. In each round of

a match, you and the other participant you are matched with will choose a number

between 0.0 and 28.0 simultaneously.

Payoff tables

Figure 3.7: Payoff table handed out to subjects in the Comp treatment.

      The  Other’s Choice →        

 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 

 0.0 -28.00 -27.96 -27.87 -27.74 27.57 -27.35 -27.09 -26.78 -26.43 -26.04 -25.60 -25.12 -24.59 -24.02 -23.41 

 2.0 -18.16 -17.46 -16.72 -15.93 -15.09 -14.21 -13.29 -12.33 -11.32 -10.26 -9.16 -8.02 -6.84 -5.61 -4.33 

 4.0 -10.55 -9.19 -7.78 -6.33 -4.84 -3.30 -1.72 -0.09 1.58 3.29 5.05 6.85 8.70 10.59 12.52 

 6.0 -5.16 -3.14 -1.08 1.03 3.19 5.39 7.63 9.91 12.24 14.62 17.04 19.50 22.00 24.55 27.15 

 8,0 -2.00 0.68 3.41 6.18 8.99 11.85 14.75 17.70 20.69 23.72 26.80 29.92 33.09 36.30 39.55 

 10.0 -1.06 2.28 5.67 9.10 12.57 16.09 19.65 23.26 26.91 30.60 34.34 38.12 41.95 45.82 49.73 

Your 12.0 -2.34 1.66 5.70 9.79 13.93 18.11 22.33 26.59 30.90 35.26 39.66 44.10 48.58 53.11 57.69 

Choice 14.0 -5.85 -1.19 3.52 8.27 13.06 17.90 22.78 27.71 32.68 37.69 42.75 47.85 53.00 58.19 63.42 

    ↓ 16.0 -11.58  -6.26 -0.90 4.51 9.97 15.47 21.01 26.59 32.22 37.90 43.62 49.38 55.18 61.03 66.93 

 18.0 -19.54 -13.56 -7.53 -1.46 4.65 10.81 17.01 23.26 29.55 35.88 42.26 48.68 55.15 61.66 68.21 

 20.0 -29.72 -23.08 -16.39 -9.66 -2.89 3.93 10.79 17.70 24.65 31.64 38.68 45.76 52.89 60.06 67.27 

 22.0 -42.12 -34.82 -27.48 -20.09 -12.65 -5.17 2.35 9.91 17.52 25.18 32.88 40.62 48.40 56.23 64.11 

 24.0 -56.75 -48.79 -40.78 -32.73 -24.64 -16.50 -8.32 -0.09 8.18 16.49 24.85 33.25 41.70 50.19 58.72 

 26.0 -73.60 -64.98 -56.32 -47.61 -38.85 -30.05 -21.21 -12.33 -3.40 5.58 14.60 23.66 32.76 41.91 51.11 

 28.0 -92.68 -83.40 -74.07 -64.70 -55.29 -45.83 -36.33 -26.78 -17.90 -7.56 2.12 11.84 21.61 31.42 41.27 
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Figure 3.8: Payoff table handed out to subjects in the Subs treatment.

      The  Other’s Choice →        

 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 

 0.0 -28.00 -22.88 -17.57 -12.09 -6.42 -0.57 5.47 11.68 18.08 24.66 31.42 38.37 45.49 52.80 60.29 

 2.0 -22.39 -17.46 -12.35 -7.06 -1.58 4.07 9.91 15.93 22.14 28.52 35.09 41.84 48.77 55.89 63.19 

 4.0 -17.43 -12.70 -7.78 -2.69 2.59 8.06 13.70 19.53 25.54 31.73 38.11 44.66 51.40 58.32 65.43 

 6.0 -13.13 -8.59 -3.87 1.03 6.12 11.39 16.84 22.47 28.29 34.29 40.47 46.83 53.37 60.10 67.01 

 8,0 -9.48 -5.14 -0.61 4.10 8.99 14.07 19.32 24.76 30.38 36.19 42.17 48.34 54.69 61.23 67.94 

 10.0 -6.49 -2.34 2.00 6.51 11.21 16.09 21.15 26.40 31.83 37.43 43.23 49.20 55.36 61.70 68.22 

Your 12.0 -4.15 -0.19 3.95 8.27 12.77 17.46 22.33 27.38 32.61 38.03 43.63 49.41 55.37 61.51 67.84 

Choice 14.0 -2.46 1.30 5.24 9.37 13.68 18.17 22.85 27.71 32.75 37.97 43.37 48.96 54.72 60.67 66.81 

    ↓ 16.0 -1.43 2.14 5.89 9.82 13.94 18.24 22.72 27.38 32.22 37.25 42.46 47.85 53.43 59.18 65.12 

 18.0 -1.06 2.32 5.88 9.62 13.54 17.64 21.93 26.40 31.05 35.88 40.90 46.10 51.48 57.04 62.78 

 20.0 -1.33 1.85 5.21 8.76 12.49 16.40 20.49 24.76 29.22 33.86 38.68 43.68 48.57 54.24 59.79 

 22.0 -2.26 0.72 3.89 7.25 10.78 14.49 18.39 22.47 26.74 31.18 35.81 40.62 45.61 50.78 56.14 

 24.0 -3.85 -1.05 1.92 5.08 8.42 11.94 15.64 19.53 23.60 27.85 32.28 36.90 41.70 46.68 51.84 

 26.0 -6.09 -3.49 -0.71 2.26 5.40 8.73 12.24 15.93 19.81 23.86 28.10 32.52 37.13 41.91 46.88 

 28.0 -8.98 -6.57 -3.99 -1.22 1.73 4.87 8.18 11.68 15.36 19.22 23.27 27.50 31.91 36.50 41.27 

3.B. Mutual Fully Cooperative Behavior

It is interesting also to look at mutual fully cooperative behavior. Figure 3.9 depicts

the evolution of mutual full cooperation across treatments for the first round and all

rounds of matches respectively. In all rounds subjects succeed in mutual play of fully

cooperative choices significantly more in Subs treatment compared to Comp treatment.

In the first rounds, however, mutual full cooperation rate is very low: almost 0% under

Comp and below 10% under Subs. Almost none of the pairs succeed in full cooperation

in the first rounds with Comp, while they learn to coordinate in mutual full cooperation

within a match.

Table 3.7 presents results from probit regressions on mutual full cooperation rate.

The probability that a pair reaches full cooperation mutually is significantly higher in

the Subs treatment. In both treatments a pair is significantly more likely to coordinate

in mutual full cooperation if they played mutual full cooperation in the previous round.

Pairs are significantly more likely to achieve mutual full cooperation when they gain

experience both within a match and throughout the experiment. The effect of experience

on the likelihood of mutual full cooperation is higher, albeit insignificant, in the Comp
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Figure 3.9: Mutual Full Cooperation Rate
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Notes: This figure shows the evolution of mutual full-cooperation rate across matches, on the
left-hand panel for the first rounds only and on the right-hand panel for all rounds.

Table 3.7: Regression results on mutual full cooperation rates

First rounds All rounds

(1) (2) (3) (4)

VARIABLES MutualCoopit MutualCoopit MutualCoopit MutualCoopit

Comp −0.027** −0.020** −0.093** −0.106***

(0.012) (0.010) (0.039) (0.033)

Match 0.001 0.013***

(0.001) (0.002)

Comp*Match −0.001 0.001

(0.001) (0.003)

Observations 3,200 3,200 33,024 33,024

Notes: This table reports marginal effects (delta-method standard errors in parentheses) from
probit regression with standard errors clustered at the level of session. The dependent variable is
a dummy which is equal to 1 if the choice is mutually fully cooperative and 0 otherwise. ∗∗∗ (∗∗)
[∗] indicate that the estimated coefficient is significant at the 1% (5%) [10%] level. Specifications
(1) and (2) are based on observations from the first rounds only and specifications (3) and (4)
are based on all observations.

treatment.

3.C. Additional Graphs and Tables
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Figure 3.10: Equilibrium Range
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Notes: This figure shows the iso-payoff contours for the games of strategic complements and
substitutes respectively on the right- and left-hand panels.

Table 3.8: Regression results on average choice of non-JPM pairs (60%)

(1) (2) (3)

VARIABLES Choiceij Choiceij Choiceij

Comp 0.972 0.797 0.183

(0.890) (0.853) (0.665)

Round −0.061*** −0.051**

(0.015) (0.018)

Comp*Round 0.020 0.027

(0.028) (0.027)

Match 0.098

(0.071)

Comp*Match 0.051

(0.095)

Constant 17.04*** 17.58*** 16.50***

(0.754) (0639) (0.398)

Observations 26,500 26,500 26,500

R-squared 0.008 0.013 0.031

Notes: This table reports results from linear regression with standard errors (in parentheses)
clustered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at
the 1% (5%) [10%] level.
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Figure 3.11: JPM vs Non-JPM Pairs (65%)
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Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs.
A pair is referred to as JPM if both subjects make a choice in the interval [25, 26] in at least
65% of the rounds in their individual match.

Figure 3.12: JPM vs Non-JPM Pairs (70%)
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Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs.
A pair is referred to as JPM if both subjects make a choice in the interval [25, 26] in at least
70% of the rounds in their individual match.
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Figure 3.13: JPM vs Non-JPM Pairs (75%)
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Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs.
A pair is referred to as JPM if both subjects make a choice in the interval [25, 26] in at least
75% of the rounds in their individual match.

Figure 3.14: JPM vs Non-JPM Pairs (80%)
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Notes: This figure shows the evolution of choices across matches for JPM and non-JPM pairs.
A pair is referred to as JPM if both subjects make a choice in the interval [25, 26] in at least
80% of the rounds in their individual match.
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Table 3.9: Regression results on payoffs

(1) (2) (3)

VARIABLES Payoffi Payoffi Payoffi

Comp 0.208 −0.246 −1.306

(1.640) (1.424) (1.256)

Round −0.085 −0.059

(0.051 ) ( 0.049)

Comp*Round 0.050 0.059

(0.062) (0.060)

Match 0.255**

(0.086)

Comp*Match 0.091

(0.116)

Constant 33.68*** 34.45*** 31.45***

(1.370) (1.034) (1.041)

Observations 33,024 33,024 33,024

R-squared 0.001 0.002 0.022

Notes: This table reports results from linear regression with standard errors (in parentheses)
clustered at the session level. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at
the 1% (5%) [10%] level.

Figure 3.15: Distribution of Match Lengths in the Experiment
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Notes: This figure shows the distribution of the randomly determined match lengths.
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Table 3.10: Summary statistics at the individual level

Average choices

First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs

First round 17.33 17.55 17.50 18.63 17.90 19.37

All rounds 16.31 17.47 18.70 19.09 19.87 20.12

Full Cooperation Rate

First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs

First round 0.05 0.18 0.05 0.18 0.13 0.25

All rounds 0.06 0.09 0.14 0.27 0.20 0.36

Average non-fully cooperative choices

First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs

First round 16.08 16.69 17.02 17.03 17.51 17.58

All rounds 16.71 16.55 17.59 16.64 18.33 16.85

Notes: This table summarizes average choices (top panel), full cooperation rates (middle panel)
and average non-fully cooperative choices (bottom panel). The results are reported for the first
rounds and all rounds of the first match, all and the last 10 matches.
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Table 3.11: Summary statistics at the pair level, with 60%

Average choices in JPM pairs

First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs

First round - 16 19.63 21.96 19.33 22.30

All rounds - 23.90 24.64 25.10 24.60 25.18

Average choices in non-JPM pairs

First match All matches Last 10 matches

Comp Subs Comp Subs Comp Subs

First round 17.55 18.26 17.26 17.83 17.55 18.26

All rounds 16.31 16.67 18.16 17.53 18.99 17.92

Notes: This table summarizes average choices for JPM and non-JPM pairs. A pair is referred
to as a JPM pair if subjects in this pair sustain full cooperation in at least 60 % of the rounds
in that match. We present the averages for the first round and all rounds of the first match,
all matches and the last 10 matches separately.
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Chapter 4

Choosing To Be Informed in a

Repeated Trust Game

4.1. Introduction

Trust has been identified as one of the important determinants of economic growth

(Zak and Knack, 2001), the degree of financial development (Guiso et al., 2004), and

international trade and investments (Guiso et al., 2008, 2009). This paper contributes

to the understanding of the micro-foundations of trust.

Consider a binary trust game where the trustor (he) decides whether to trust or not,

and the trustee (she) decides to reciprocate trust or not. In a one-shot trust game, the

trustor prefers to be informed about the trustee’s type, that is, whether the trustee is

trustworthy or not. This information helps him to avoid the potential loss in payoff

by trusting an untrustworthy trustee. The situation is different, however, in a repeated

trust game. In this case, uncertainty about the trustee’s type might help the trustor

and trustee to sustain a high level of cooperation and high payoffs. The intuition is

that under uncertainty a material-payoff-maximizing (‘selfish’) trustee has an incentive

to be trustworthy today in order to induce trust tomorrow (Kreps et al. (1982)). If this

strategy works, the trustee is better off if the trustor is uninformed than if he is informed

about her type. Interestingly, also the trustor may be better off being uninformed than

informed. Depending on the gains of cooperation, obtaining a ‘high’ payoff today and a

‘low’ payoff tomorrow may be better than obtaining a ‘medium’ payoff twice. If, however,

the trustor strongly dislikes getting a lower payoff than the trustee, he will prefer to be

informed about the type of the trustee so that he can condition his decision to trust on

the latter’s type. We design an experiment to study whether trustors choose to obtain

information about the type of the matched trustee if they have the chance to do so.

In our experiment subjects play a reduced form of a twice-repeated binary trust game

under one of two conditions for a number of rounds. The game is a reduced form because

it ends at the point the trustor does not trust, or the trustee does not reciprocate trust

(Reuben and Suetens, 2014b). In the first condition, referred to as Imperfect, trustors are

uninformed about the type of the matched trustee. In the second condition, referred to

73



Chapter 4: Choosing To Be Informed in a Repeated Trust Game

as Choice, trustors have the choice to obtain information about the type of the trustee.

In particular, they have the choice to know whether the trustee will be trustworthy or

not on her last move. Because we measure the strategies, we can provide this information

to trustors if they want to know. In addition, because we elicit strategies, we can inform

all players about the percentage of trustworthy trustees in their population. This is

important, because it induces common knowledge about the probability that the trustee

is a trustworthy type.

As a theoretical framework we use a model where the trustor is uncertain about the

type of the trustee, which can be selfish or trustworthy. The predictions strongly depend

on the prior probability that the trustee is a trustworthy type. If this probability is suffi-

ciently high, trustors prefer to be uninformed about the trustee’s type, and are predicted

to trust today and tomorrow. If the probability is in an ‘intermediate’ range, they prefer

to be informed if they have the choice, which leads them not to trust matched trustees

who are selfish types. The same trustors, however, if uninformed, would trust on their

first move (today) and with some probability on their second move (tomorrow). Finally,

if the probability that the trustee is a trustworthy type is too low, then uninformed

trustors do not even trust on their first move.

The predictions also strongly depend on the utility function of trustors, in particular,

on the extent to which the trustor (dis)likes an unequal more efficient distribution over

an equal less efficient distribution. Following Charness and Rabin (2002), we label this

preference ‘σ’. A player with a high (positive) σ attaches more weight to efficiency

whereas a player with a low (negative) σ dislikes having lower payoffs than the trustee

(as in Fehr and Schmidt, 1999). Interestingly, for plausible degrees of inequality aversion

(σ < 0) the trustee will trust if uninformed but prefers to be informed if he has the

choice, which destroys trust if the trustee is selfish.

In the experiment we find that in approximately 90% of the cases, subjects in the role

of trustor choose to be informed about the matched trustee’s type. In line with the above

prediction, we find that first-move (today’s) trust rates are significantly lower if trustors

can choose to be informed than if uninformed, both between and within subjects. For

second-move (tomorrow’s) trust rates, we do not find a treatment effect. In order to

study the relation between trustors’ behavior and their σ, we elicited this preference in a

dictator game that preceded the trust games. We find that the elicited σ’s are negatively

correlated with the percentage of times trustors in the experiment choose to be informed.

We also find that the within-subjects difference in first-move trust rates between cases

where the trustor is uninformed and cases where he is informed that the trustee is selfish

is larger, the smaller the trustor’s elicited σ.

We are not aware of other papers that study in a trust or related game whether
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trustors choose to be informed about the type of the trustee ex ante, that is, before they

decide to trust or not. Some papers study whether trustors avoid potentially harmful

knowledge in a trust game ex post. Examples are Aimone and Houser (2012) and Aimone

and Houser (2013). In these studies trustors in a one-shot binary trust game have the

option to replace the strategy of the trustee they were initially matched with by the

strategy of a trustee randomly drawn from a population of trustees identical to the one

they were playing with. Findings are that trustors typically opt into this, and thus avoid

getting informed about the matched trustee’s choice (type). In addition, trustors trust

less if this avoidance option is not provided.

The remainder of the paper is organized as follows. In section 4.2 we present the

experimental games and the theoretical prediction. In section 4.3 we discuss the ex-

perimental design, procedures, and research questions. In section 4.4 we present the

experimental results. Section 4.5 concludes.

4.2. Experimental Games and Predictions

In the experiment subjects play twice-repeated trust games as used by Reuben and

Suetens (2014b). In the game the trustor (player 1) decides whether to trust by playing

STAY or not to trust by playing STOP. We refer to this choice by player 1’s ‘first move’.

If player 1 plays STOP on his first move, the game ends. If player 1 chooses STAY,

the game continues. If the game continues, the trustee (player 2) decides whether to

reciprocate by choosing IN or not to reciprocate by choosing OUT. We refer to this

choice as player 2’s ‘first move’. If player 2 chooses OUT, the game ends. If player 2

chooses IN, the game continues. After continuation, player 1 chooses between STAY and

STOP, referred to as player 1’s ‘second move’. If player 1 chooses STOP, the game ends.

If player 1 chooses STAY, the game continues to the last period. In the last period, if

played, player 2 decides between IN and OUT. This choice is referred to as player 2’s

‘second move’. In each step, the total surplus increases so that it is maximized if player

1 chooses STAY and player 2 chooses IN.

In the first version of the game, which we refer to as Imperfect, we assume that the

trustee can be either a selfish or trustworthy type, and the trustor does not observe the

trustee’s type. In the second version of the game, which we refer to as Choice, the trustor

has the choice to be informed about the type of the trustee. In what follows we describe

both experimental games in more detail and we derive the theoretical predictions.
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4.2.1. Imperfect Game

Figure 4.1 shows the Imperfect game. The game has 5 periods. In the first period, Nature

draws the type of player 2. With probability γ, player 2 is a type who commits to be

trustworthy by reciprocating on both moves (so a trustworthy type). With probability 1−
γ, player 2 is a selfish type. γ is common knowledge. We use perfect Bayesian equilibrium

as a theoretical concept. We follow Camerer and Weigelt (1988) and Anderhub et al.

(2002) in deriving the theoretical predictions.34

Figure 4.1: Imperfect
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From period 2, the players decide in turns to STAY or STOP (player 1), and to stay

IN or go OUT (player 2). At the point player 1 chooses STOP, or player 2 chooses OUT,

the game ends. To derive the equilibrium predictions, we assume that material payoffs

in Figure 4.1 are the true preferences for the players and these preferences are common

knowledge.

Player 1 does not observe the type of player 2. Given that γ, which is the probability

of player 2 being a trustworthy type, is common knowledge, player 1’s prior belief about

34For similar games and theoretical predictions, see Neral and Ochs (1992); McKelvey and Palfrey
(1992); Brandts and Figueras (2003); Duffy and Munoz-Garćıa (2013).
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player 2 being a trustworthy type µ1 = γ. If the game continues to period 4, player 1

updates his belief about player 2’s type in this period. If this is the case, player 2 must

have chosen IN on her first move. This might be because player 2 is a trustworthy type

who reciprocates on both moves or because she is a selfish type who only reciprocates

on her first move but not on her second. In the following we solve the game.

In the last period, a trustworthy player 2 chooses IN and a selfish player 2 chooses

OUT by definition. Player 1 chooses STAY in the last information set if his expected

payoff from choosing STAY is larger than his expected payoff from choosing STOP. In

the last information set, observing the first move of player 2, player 1 updates his belief

about player 2’s type using Bayesian updating. Denote the updated belief after player

2 playing IN on her first move by µ2. Player 1 chooses STAY on his second move if

µ232 + (1− µ2)20 > 24. That is, player 1 plays STAY on his second move if µ2 >
1
3
.

We first consider the case when γ > 1
3
. Given that µ1 >

1
3
, it also holds that µ2 >

1
3

once player 1 arrives in period 4. In this case, player 1 chooses STAY on his second

move. Player 2 plays IN on her first move if she is trustworthy. If player 2 is selfish, then

she also chooses IN on her first move since 38 > 30. Player 1 chooses STAY in the first

information set if his expected payoff from choosing STAY is larger than his expected

payoff from choosing STOP, that is if γ32+(1−γ)20 > 16. This inequality always holds

as γ cannot be negative. Thus player 1 chooses STAY on his first move.

We now consider the case when γ < 1
3
. We first show that the equilibrium is in

mixed strategies in this case. Let m be the probability that player 1 chooses STAY on

his second move and p be the probability that a selfish player 2 chooses IN on her first

move. Player 1 updates his belief according to Bayes’ Rule. His updated belief given

that player 2 chooses IN on her first move is given by µ2 = γ
γ+p(1−γ)

. We first show that

p cannot take the values 0 and 1 (following Anderhub et al., 2002). Suppose that p = 0,

then by Bayesian updating, µ2 = γ
γ+0(1−γ)

= 1. This implies that player 1 optimally plays

STAY ((1−m) = 0), in which case player 2 would optimally choose IN with probability

p = 1 contradicting the initial supposition. Thus p > 0 should be satisfied in equilibrium.

Suppose that p = 1. Then by Bayesian updating, µ2 = γ
γ+1(1−γ)

= γ < 1
3
. This implies

that m = 0. But then player 2 would choose OUT on her first move, which contradicts

the initial supposition that p = 1. Thus 0 < p < 1 should hold. That is, player 2 uses a

mixed strategy on her first move. In this case, player 1 should also use a mixed strategy

on his second move as otherwise player 2 would optimally play a pure strategy on her

first move as well. Therefore, we have proven that 0 < p < 1 and 0 < m < 1 when

γ < 1
3
.

Next we calculate the equilibrium mixing probabilities. Player 1, on his second move,

plays STAY with probability m and plays STOP with probability (1 −m). He chooses
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m such that a selfish player 2 is indifferent on her first move. Thus we have m38 + (1−
m)24 = 30, yielding m = 3

7
. Player 2, on her first move, plays IN with probability p and

plays OUT with probability (1− p). He chooses p such that player 1 is indifferent on his

second move, that is µ2 = γ
γ+p(1−γ)

= 1
3
, yielding p = 2γ

1−γ .

Finally, player 1, on his first move, plays STAY if his expected payoff from doing so

is larger than his expected payoff from choosing STOP. That is, if γ[m32 + (1−m)24] +

(1− γ)[p(m20 + (1−m)24) + (1− p)12] > 16. Substituting m = 3
7

and p = 2γ
1−γ , we get

that this condition holds if γ > 1
9
. Thus player 1 chooses STAY if 1

9
< γ < 1

3
and chooses

STOP if γ < 1
9
. The equilibrium predictions for the Imperfect game are summarized as

follows:35

Prediction Imperfect. Let player 2 be a trustworthy type with probability γ and a

selfish type with probability 1− γ. The theoretical predictions of the Imperfect game are:

(a) γ > 1
3
: Player 1 plays STAY on his both moves. Beliefs are µ1 = γ and µ2 = γ. A

trustworthy player 2 plays IN on both moves and a selfish player 2 plays IN on her

first move and OUT on her second move.

(b) 1
9
< γ < 1

3
: Player 1 plays STAY on his first move and plays STAY with probability

3
7

and STOP with probability 4
7

on his second move. Beliefs are µ1 = γ and µ2 = 1
3
.

A trustworthy player 2 plays IN on both moves. A selfish player 2 plays IN with

probability 2γ
1−γ and plays OUT with probability 1− 2γ

1−γ on her first move and plays

OUT on her second move.

(c) γ < 1
9
: Player 1 plays STOP on his first move and plays STAY with probability 3

7

and STOP with probability 4
7

on his second move. Beliefs are µ1 = γ and µ2 = 1
3
.

A trustworthy player 2 plays IN on both moves. A selfish player 2 plays IN with

probability 2γ
1−γ and OUT with probability 1− 2γ

1−γ on her first move and OUT on her

second move.

4.2.2. Choice Game

Figure 4.2 shows a game where before player 1 makes his first move in a trust game, he

can choose to be perfectly informed about the type of player 2, that is, to know or not to

know whether player 2 is a trustworthy type. We refer to this game as the Choice game.

It is common knowledge whether player 1 knows or does not know the type of player 2.

Note that we continue to refer to the first (second) move of player 1 in the trust game,

as player 1’s first (second) move.

35We do not include cases where γ = 1
3 or γ = 1

9 because in these cases, players are indifferent.
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Figure 4.2: Choice
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The game has 6 periods. In the first period Nature draws the type of player 2

(trustworthy or selfish). The probability of player 2 being a trustworthy type, γ, is

common knowledge. In the second period, player 1 is asked whether he wants to obtain

information about the type of player 2. If player 1 chooses KNOW in period 2, he is

informed about whether player 2 is a trustworthy or a selfish type. If player 2 chooses

NOT KNOW, he does not receive any information about the type of player 2. In periods

3 to 6 the game proceeds in the same way as the above-described trust game. Namely,

both players choose in turn whether to STAY or STOP (player 1), or whether to stay

IN or go OUT (player 2).

Before calculating the optimal choice of player 1, that is, whether player 1 chooses

to KNOW or NOT KNOW the type of player 2, we solve the subgames depending on

player 1’s choice in period 2.

Player 1 chooses KNOW

Suppose that player 1 chooses KNOW in period 2 and solve the game by backward

induction. In the last period of the game, a trustworthy player 2 chooses IN and a
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selfish player 2 chooses OUT. Player 1, on his second move, chooses STAY if player 2

is trustworthy since 32 > 24 and chooses STOP if player 2 is selfish since 24 > 20. A

trustworthy player 2 chooses IN on his first move by definition. A selfish player 2 chooses

OUT on her first move as 30 > 24. Player 1, on his first move , chooses STAY if he is

matched with a trustworthy player 2 since 32 > 16 and chooses STOP if he is matched

with a selfish player 2 since 16 > 12. So, in summary, if player 1 chooses KNOW in

period 2, a trustworthy player 2 will choose IN on both moves and player 1 chooses

STAY on both moves in equilibrium. A selfish player 2 chooses OUT on both moves and

player 1 chooses STOP on both moves.

Player 1 chooses NOT KNOW

When player 1 chooses NOT KNOW, we are in the Imperfect game. We refer to section

4.2.1 for the calculation of the equilibrium in this subgame.

Choice to KNOW or NOT KNOW

We now calculate the optimal choice of player 1 in period 2. Player 1 chooses KNOW

if his expected payoff from playing KNOW is larger than his expected payoff from NOT

KNOW. We consider the 3 ranges for γ that are relevant given that player 1 does NOT

KNOW (see 4.2.1): γ > 1
3
, 1

9
< γ < 1

3
and γ < 1

9
.

First, we consider the case where γ > 1
3
. Player 1 chooses KNOW in this case if

γ32 + (1− γ)16 > γ32 + (1− γ)20.

This inequality never holds since 16<20. Thus player 1 chooses NOT KNOW whenever

γ > 1
3
.

Second, we consider the case where 1
9
< γ < 1

3
. Player 1 chooses KNOW in this case

if

γ32 + (1− γ)16 > γ[m32 + (1−m)24] + (1− γ)[p(m20 + (1−m)24) + (1− p)12].

Plugging in the equilibrium values for m and p derived above, this inequality holds only

when γ < 1
5
. Thus player 1 chooses KNOW whenever 1

9
< γ < 1

5
and chooses NOT

KNOW whenever 1
5
< γ < 1

3
. He is indifferent between KNOW and NOT KNOW when

γ = 1
5
.

Last, we consider the case where γ < 1
9
. Player 1 chooses KNOW in this case if

γ32 + (1− γ)16 > 16.
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This inequality always holds, thus player 1 chooses KNOW whenever γ < 1
9
.

The theoretical predictions for the Choice game are summarized as follows:

Prediction Choice. Let player 2 be a trustworthy type with probability γ and a selfish

type with probability 1− γ. The theoretical predictions of the Choice game are:

(a) γ > 1
3
: Player 1 plays NOT KNOW. Player 1 plays STAY on both moves if he plays

NOT KNOW in period 2. Beliefs are µ1 = γ and µ2 = γ. When player 1 plays

KNOW, then he plays STAY on both moves when player 2 is a trustworthy type and

STOP on both moves when player 2 is a selfish type. A trustworthy player 2 plays

IN on both moves when player 1 plays KNOW or NOT KNOW. A selfish player 2

plays IN on her first move and OUT on her second move when player 1 plays NOT

KNOW. A selfish player 2 plays OUT on both moves when player 1 plays KNOW.

(b) 1
9
< γ < 1

3
: Player 1 plays NOT KNOW if γ > 1

5
and KNOW if γ < 1

5
. If γ = 1

5

he is indifferent between playing KNOW and NOT KNOW. Player 1 plays STAY on

his first move and plays STAY with probability 3
7

and STOP with probability 4
7

on

his second move when he plays NOT KNOW. Beliefs are µ1 = γ and µ2 = 1
3
. When

player 1 plays KNOW, he plays STAY on both moves if player 2 is a trustworthy type

and STOP on both moves if player 2 is a selfish type. A trustworthy player 2 plays

IN on both moves when player 1 plays KNOW or NOT KNOW. A selfish player 2

plays IN with probability 2γ
1−γ and plays OUT with probability 1 − 2γ

1−γ on her first

move and plays OUT on her last move when player 1 plays NOT KNOW. A selfish

player 2 plays OUT on both moves when player 1 plays KNOW.

(c) γ < 1
9
: Player 1 plays KNOW. Player 1 plays STOP on his first move and plays

STAY with probability 3
7

and STOP with probability 4
7

on his second move when he

plays NOT KNOW. Beliefs are µ1 = γ and µ2 = 1
3
. When player 1 plays KNOW,

he plays STAY on both moves if player 2 is a trustworthy type and STOP on both

moves if player 2 is a selfish type. A trustworthy player 2 plays IN on both moves

when player 1 chooses KNOW or NOT KNOW. A selfish player 2 plays IN with

probability 2γ
1−γ and OUT with probability 1− 2γ

1−γ on her first move and plays OUT

on her second move when player 1 plays NOT KNOW. A selfish player 2 plays OUT

on both moves when player 1 chooses KNOW.

4.2.3. Non-Standard Preferences of Trustors

Several studies have shown that rather than being material payoff maximizers, individuals

sometimes have other motivations. In particular, several individuals dislike realizing a

lower material payoff than others (see Fehr and Schmidt (1999), Bolton and Ockenfels
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(2000)), or prefer efficiency over inefficient distributions (Charness and Rabin (2002)).

In this section we discuss the intuition of how the theoretical predictions are affected if

the trustor has such motivations.

Intuitively, it should be clear that the more the trustor dislikes receiving a lower

material payoff than the trustee, the higher γ (the probability that the trustee is a

trustworthy type) should be for the trustor to trust. In addition, in the case that the

trustor can choose to obtain information about the trustee’s type, it is also intuitive to

see that the more the trustor dislikes receiving a lower material payoff than the trustee,

the more likely it is that he will want to have information about player 2’s type. This

will allow him to avoid unequal payoff distributions. To illustrate, assume that player 1

has the following utility function (Charness and Rabin (2002)):

U(x1, x2) = x1 + σ(x2 − x1), (4.1)

where x1 and x2 are the material payoffs for player 1 and player 2.

If σ < 0, player 1 dislikes being behind player 2 in terms of material payoff. The

more negative is σ, the more player 1 dislikes disadvantageous inequality aversion. For

some players, however, σ > 0, because they prefer an unequal distribution with relatively

high total payoffs (efficiency) over an equal distribution with relatively low total payoffs

(Engelmann and Strobel (2004)). In what follows we discuss how choices of player 1

are affected by using this utility function. For simplicity, we assume that σ is common

knowledge. This implies that choices of player 2 follow in a straightforward way from

those of player 1. In section A of the Appendix, the full equilibrium predictions and

proofs are provided.

Consider first the Imperfect game. If σ < 0, the threshold for γ above which player 1

plays STAY on his second move gets larger in comparison to the case when σ = 0. Thus

player 1 will less easily play STAY on his second move, and the threshold will depend

on his σ. The threshold becomes 2−9σ
6−9σ

as compared to 1
3
≈ 0.333. Along the same lines,

the threshold for γ above which player 1 plays STAY on his first move also gets larger

in comparison to the case when σ = 0. It becomes
(

2−9σ
6−9σ

)2
instead of 1

9
≈ 0.111. To

illustrate, a player 1 with σ = −0.2 (σ = −0.4) will choose STAY on his first move if

γ > 0.237 (γ > 0.340) and on his second move if γ > 0.487 (γ > 0.583).

If σ > 0, the threshold for γ above which player 1 plays STAY on his second move

gets smaller in comparison to the case when σ = 0, as well as the threshold above which

player 1 plays STAY on his first move. A special case is that σ > 2
9
. In this case player

1 cares so much about efficiency that he will unconditionally choose STAY on both

moves, independently from γ. The reason is that he then prefers distribution (20, 38)
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Figure 4.3: Predicted First Moves of Player 1
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Notes: The figure illustrates the predicted first moves of player 1. The predictions in Choice
when player 2 is selfish are shown in the left-hand panel, in Choice when player 2 is trustworthy
are shown in the middle panel and in Imperfect are shown in the right-hand panel. In the black
area, player 1 chooses STOP. In the grey area, player 1 mixes between STAY and STOP. In
the light grey area, player 1 chooses STAY.

over (24, 24) even when he would know that player 2 is selfish.

We now turn to the Choice game. Whether player 1 plays NOT KNOW and STAY

on his first move depends on σ. Even if the probability the trustee is a trustworthy

type is very high, that is, if γ > 2−9σ
6−9σ

, player 1 will prefer KNOW and STOP if he is

sufficiently inequality averse. In particular, he prefers KNOW and therefore STOP if

σ < −2
9
≈ −0.222. The reason is that in this case he prefers the distribution of payoffs

obtained when choosing STOP on his first move (16, 16) over the distribution that would

result if he plays STAY on both moves and player 2 is selfish (20,38). If σ > −2
9
, he

prefers NOT KNOW and chooses STAY on both moves. In the extreme case that σ > 2
9
,

player 1 is indifferent between KNOW and NOT KNOW and therefore chooses STAY on

both moves whenever γ > 2−9σ
6−9σ

. The reason is that in this case player 1 prefers (20, 38)

over (32, 32).

When γ < 2−9σ
6−9σ

, the predictions in the Choice game have the same intuition as

those where σ = 0 (of course, provided that −2
9
< σ < 2

9
). The difference is that the

threshold for γ influencing player 1’s choice to KNOW, now also depends on σ. If σ < 0

(σ > 0), player 1 will prefer to KNOW more (less) easily than when σ = 0 provided that

−2
9
< σ < 2

9
.

Figure 4.3 and 4.4 gives an overview of the predicted first and second move choices

of player 1 as a function of γ and σ.36

36These predictions integrate the choice of player 1 on receiving information or not about the type of
player 2. If σ < − 2

9 player 1 plays KNOW for any value of γ leading to a black area for this range. If

σ > −2
9 player 1 plays KNOW for γ < (2−9σ)2

20−36σ+81σ2 , and plays NOT KNOW for γ > (2−9σ)2

20−36σ+81σ2 .
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Figure 4.4: Predicted Second Moves of Player 1
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Notes: The figure illustrates the predicted second moves of player 1 given that he has chosen
STAY on his first move. The predictions in Choice when player 2 is selfish are shown in the
left-hand panel, in Choice when player 2 is trustworthy are shown in the middle panel and in
Imperfect are shown in the right-hand panel. In the black area, player 1 chooses STOP. In the
grey area, player 1 mixes between STAY and STOP. In the light grey area, player 1 chooses
STAY.

4.3. Research Methods and Questions

4.3.1. Experimental Design

The experiment was designed in order to implement the above-described games as close

as we could. The experiment has two treatments, labeled according to the implemented

games. In treatment Imperfect, the game shown in Figure 4.1 was induced, and in

treatment Choice, the game shown in Figure 4.2 was induced. Subjects played each of the

two games a number of times to allow for learning. After each round they were randomly

rematched. Equilibrium theory would be an unreasonable theoretical framework, if there

is no scope for learning.

We measured choices in the experiment by eliciting strategies.37 We asked subjects

in the role of player 1 whether they choose STOP on their first move, STAY on their

first move and STOP on their second move, or STAY on both moves. Likewise, we

asked subjects in the role of player 2 whether they choose OUT on their first move, IN

on their first move and OUT on their second move, or IN on both moves. We elicited

strategies in order to have information about the type of subjects in the role of player

2. In particular, subjects who choose IN on both moves in the role of player 2, were

classified as trustworthy types.38

We elicited the strategies of subjects in the role of player 2 in two steps. In a first step,

at the beginning of the experiment, we asked the subjects whether they decide to play

IN-IN or not IN-IN. Subjects were committed to this choice for the entire experiment,

37As shown by Reuben and Suetens (2012, 2014b), trust and reciprocation rates based on ‘cold’
elicitation are not significantly different from those based on ‘hot’ elicitation.

38Instructions handed out to the subjects are included in section B of the Appendix.
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and they were aware of this. The aim was twofold. First, we wanted to measure the

percentage of subjects in each session in the role of player 2 that commit to being

trustworthy by choosing IN-IN, namely γ. Given that the theoretical predictions strongly

depend on γ, this occurred to us as crucial. In order to induce common knowledge of

γ, all subjects in the session were informed about the ratio of subjects who chose IN-IN

(for example, 6 out of 16 players 2 chose IN-IN). Second, we needed the type of player 2

to be communicable to player 1 in Choice.

In a second step, which was, in contrast to the first step, repeated in each round of the

experiment, subjects were asked to submit the remainder of their strategy. Specifically,

subjects in the role of player 1 were asked to submit their strategy (which could be

STOP, STAY-STOP, or STAY-STAY), and so were subjects in the role of player 2 who

had not chosen IN-IN (which could be OUT, or IN-OUT).39

Subjects in both treatments went through these two steps. In Choice, in between

these two steps, subjects in the role of player 1 were given the choice to be perfectly

informed about the matched player 2. In particular, player 1 was given the choice to

know whether the matched player 2 chose IN-IN in step 1 or not (that is, player 2’s

type). If he chose to click on the button to know, he received the message “The matched

player 2 has chosen IN-IN.” in the case the matched player 2 was a trustworthy type,

or the message “The matched player 2 has not chosen IN-IN.” in the case the matched

player 2 was a selfish type, next to the share of subjects who chose IN-IN. If he did not

want to know, he did not get the additional information. In addition, subjects in the role

of player 2 in Choice were informed about whether the matched player 1 was perfectly

informed about their type or not. So at the point selfish player 2 types decided whether

to choose IN-OUT or OUT, they knew that the matched player 1 knew they would not

reciprocate on their last move, if player 1 had chosen to be informed. Also, subjects in

the role of player 1 were informed that the matched player 2 would be informed if they

would choose to KNOW.

Once all subjects had submitted their decisions, the computer matched the decisions

of player 1 and player 2 and calculated the payoffs. At the end of each round, payoffs

of both players were displayed on the screen. After each round subjects were randomly

rematched.

Obviously, our implementation of a trustworthy type is a simplification. There are a

number of reasons why we use this ‘short-cut’, and did not, for example, give subjects in

the role of player 1 the option to acquire information about the past behavior of subjects

in the role of player 2. The first reason is that we wanted to induce (perfect information

39Subjects in the role of player 2 who had chosen IN-IN in the first step had no decision to make in
the remaining of the experiment.
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Figure 4.5: Dictator Game
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Notes: Figure depict the dictator game played at the beginning of the experiment.

about) player 2’s type as typically defined in theory as closely as possible without turning

to ‘robots’ or taking away all decision power of player 2.40 The second reason is that

the match between past behavior and type is very noisy. Different types can behave in

the same way. For example, both a selfish and trustworthy player 2 reciprocate on their

first move, conditional on being trusted. Therefore, in order to learn about the type of

a player based on past behavior, one would need many repetitions of the same game to

make sure that all nodes of the game are reached several times. We wanted to rule out

this type of learning. The third reason is that past experiments have shown that, in the

context of games similar to the current game, the strategy to reciprocate irrespective of

future interaction is typically more stable over time than other strategies (Reuben and

Suetens, 2012, 2014b,a).

In order to control for γ between the treatments, we let all subjects play Imperfect and

Choice. The decision taken by subjects in the role of player 2 in the above-mentioned step

1 was fixed for the two treatments. Subjects either first played 10 rounds of Imperfect

and then 10 rounds of Choice, or vice versa. At the point that the first part (the first

set of ten rounds) started, they did not have the instructions for the second part (the

second set of ten rounds). However, they knew that there would be another part in the

experiment.

Finally, in order to elicit preferences for disadvantageous inequality aversion of sub-

jects who would play the role of player 1 in the trust games, these subjects made choices

in a dictator game as shown in Figure 4.5 before they received the instructions for the

trust game. The subjects were matched with a randomly chosen passive player, and

were asked to choose the minimum payoff X above which they would choose LEFT. The

40For example, Camerer and Weigelt (1988), Anderhub et al. (2002) and Brandts and Figueras (2003)
introduce robot trustworthy types.
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minimum X was required to be between 1 and 34. This allowed us to get a quite sharp

measurement of σ as included in equation 4.1 for each player 1. We calculate σ from

the minimum X by solving the following indifference condition: σ = minimum X−20
18

. These

measurements allow us to study the effect of σ on choices of player 1 as discussed in

section 4.2.3. Their aim is to help to interpret potential treatment effects. At the end

of the experiment, we randomly drew a number between 1 and 34, that determined the

outcome in the dictator game, depending on the subjects’ choice of minimum X. Subjects

learned about their payoffs from this part at the end of the experiment.

4.3.2. Experimental Procedures

We conducted the experiment in CentERlab at Tilburg University in May and October

2013. We used the experimental software toolkit z-Tree to program and conduct the

experiment (Fischbacher, 2007b). Participants were recruited through an email list of

students who are interested in participating in the experiments. A total number of

128 students participated in the experiment. It was explained to the participants that

their earnings would depend on their own decisions and the decisions of others. The

experiment lasted 1 hour including reading the instructions and payments.

The experiment covered 4 sessions of 32 participants each. In each session, subjects

interacted in randomly matched pairs. We randomly rematched subjects in as large as

possible sessions (32 subjects is the limit in CentERlab) rather than rematching them

in (smaller) subpopulations within sessions. The first reason is that we wanted to limit

the variation in proportion of trustworthy types (that is, γ) between ‘populations’ of

subjects. The second reason is that we wanted to keep the incentives for trustees to

strategically choose IN on both moves (e.g., Kandori, 1992) as low as possible.

At the beginning of each session subjects were randomly allocated a role. The roles

remained fixed throughout. Participants were given instructions depending on their roles

and the treatment (see section B in the Appendix for the instructions). The instructions

were written in neutral wordings. All subjects went through a number of control ques-

tions after they had read the instructions. The games did not start before everyone had

correctly answered the control questions.

At the end of the experiment subjects were paid in private and in cash. The payoffs

in the experiment were expressed in points. Subjects were shown their total earnings

in points on the screen, which equaled the sum of earnings in points over the different

parts and rounds of the experiment. Earnings in Euro were determined by converting

the total earnings in points into Euro at the exchange rate of 5 points= 1 Euro. The

average earnings in the experiment were 16 Euro.

Table 4.1 gives an overview of the sessions.
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Table 4.1: Session Summary

Session 1 Session 2 Session 3 Session 4

Part 0 Dictator Game Dictator Game Dictator Game Dictator Game

Part 1 Imperfect Choice Imperfect Choice

Part 2 Choice Imperfect Choice Imperfect

# Subjects 32 32 32 32

Notes: The table gives an overview of the order with which treatments are implemented and the number
of subjects in each session.

4.3.3. Research Questions

Equilibrium predictions crucially depend on γ. Under ‘standard’ selfish preferences,

subjects in the role of player 1 are predicted to choose NOT KNOW in Choice if γ > 1
5
.

In this case, no difference should be observed in the first-move STAY rate of player 1

between Imperfect and Choice. In addition, if the stronger condition γ > 1
3

holds, no

differences between Choice and Imperfect should be observed in second-move STAY rates

either.

If allowing for player 1 to have a utility function as in eq. (4.1), predictions addition-

ally depend on σ. Provided that −2
9
< σ < 2

9
, subjects in the role of player 1 are now

predicted to choose NOT KNOW in Choice if γ > (2−9σ)2

20−36σ+81σ2 . Under this assumption,

no difference should be observed in the first- and second-move STAY rate of player 1

between Imperfect and Choice.

However, there are two reasons why the same player 1 may choose STAY on his

first move in Imperfect, and KNOW and STOP in Choice. A first reason is that γ is not

sufficiently high so as to induce him not to know in Choice, but still sufficiently high so as

to induce him to STAY on his first move in Imperfect. This is the case if 1
9
< γ < 1

5
. With

utility function eq. (4.1), this condition becomes
(

2−9σ
6−9σ

)2
< γ < (2−9σ)2

20−36σ+81σ2 (provided

that −2
9
< σ < 2

9
).41 Interestingly, the smaller σ within interval [−2

9
, 2

9
], the larger the

range of values for γ for which this condition holds.42

A second reason is ‘strong’ inequality aversion. If player 1 is strongly inequality averse

so that σ < −2
9
, in Choice he will prefer to KNOW and STOP on his first move even if γ

is sufficiently high.43 In Imperfect, however, he will still prefer to STAY on his first (and

41Note that if − 2
9 < σ < 2

9 , it always holds that (2−9σ)2

20−36σ+81σ2 <
2−9σ
6−9σ .

42(2−9σ
6−9σ )2 − (2−9σ)2

20−36σ+81σ2 is a negative function of σ.

43Previous evidence indicates that at least some subjects dislike disadvantageous inequality aversion
to such an extent that σ < − 2

9 ≈ −0.222. See, for example, Fehr and Schmidt (1999) and Blanco et al.
(2011).
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second) move if γ is sufficiently high (that is, if γ > 2−9σ
6−9σ

). If σ < −2
9

and γ > 2−9σ
6−9σ

it

can thus be reasonably expected that the same subject chooses STAY on both moves in

Imperfect and KNOW and STOP in Choice.44 Also, provided that σ < 2
9
, it can thus also

be expected that as σ is smaller, the within-subject difference in first- and second-move

STAY rates between cases where player 1 is uninformed (in Imperfect) and cases where

he is informed that player 2 is selfish (in Choice) is larger.

Given that player 2 is assumed to be perfectly informed in all cases, theoretical

predictions for the selfish types who play in the role of player 2 are fully driven by

those for player 1. Therefore, we formulate our research questions focusing on player 1’s

behavior. Our main set of research questions is the following:

Question 1 (a) Does player 1 prefer to know the type of the matched player 2 in Choice?

(b) If so, is player 1’s first- and second-move STAY rate lower in Choice than in Imperfect?

Our second set of research questions concerns the association between σ and player 1’s

behavior. Under the assumption that player 1’s choice in the dictator game played in the

first part of the experiment measures his σ in the utility function specified in eq. (4.1), and

assuming heterogeneity in the elicited σ’s, we should see that player 1’s choice to know

the type of the matched player 2 is negatively related to his elicited σ. In addition, as

argued before, it can be expected that σ is negatively related to within-subject differences

in STAY rates between cases where player 1 is uninformed (cf. Imperfect) and cases in

Choice where he knows player 2 is a selfish type. We formulate our second set of research

questions as follows:

Question 2 (a) Is player 1’s choice to know the type of the matched player 2 in Choice

negatively related to his elicited σ? (b) Are within-subject differences in STAY rates of

player 1 between, on the one hand, Imperfect and, on the other hand, cases in Choice

where he is informed about the matched player 2 being a selfish type negatively related

to the elicited σ’s?

44Suppose, for example, that σ = − 2
8 . Player 1 then chooses KNOW and STOP in Choice. In

Imperfect player 1 will choose STAY on his first (second) move if γ > ( 17
33 )2 ≈ 0.265 (γ > 17

33 ≈ 0.515).

89



Chapter 4: Choosing To Be Informed in a Repeated Trust Game

4.4. Experimental Results

4.4.1. Player 1’s Behavior

In this section we present the main experimental results. As described in section 4.2,

theoretical predictions crucially depend on the percentage of trustworthy player 2 types,

namely γ. Therefore, before studying the behavior of subjects in the role of player 1,

we report the observed γ (the percentage of subjects in the role of player 2 who chose

IN on both moves) in the different sessions.45 The γ’s are 0.687, 0.5, 0.375, and 0.5,

respectively, in Session 1 to 4.

In what follows, we report the results so as to answer the research questions in a

chronological order.

4.4.1.1. Choice to KNOW

All γ’s are larger than 1
5

= 0.2. This implies that, under the assumption that σ = 0,

all subjects should choose NOT KNOW in Choice, and no difference should be observed

in the STAY rates of player 1, nor in the rate at which player 2 chooses in on her first

move.

We find that almost all subjects in Choice choose to KNOW. Overall, across all

sessions, 90% of the subjects in the role of player 1 choose KNOW. This percentage

is similar in the different sessions (varying from 82% to 92%). Furthermore, it is very

similar in the two parts (87% in part 1 and 92% in part 2) so does not seem to depend

on whether Choice is played before or after Imperfect. Finally, the percentage does not

decrease over time. To illustrate, in the first 5 rounds it equals 87%, and in the last 5

rounds, it equals 91%.46

Thus we answer yes to Question 1 (a).

4.4.1.2. Behavior in Choice versus Imperfect

In this section, we study Question 1(b). Specifically, given that the majority of subjects

in the role of player 1 prefer to KNOW in Choice, we study whether first- and second-

move STAY rates are lower in Choice than in Imperfect.

Figure 4.6 shows the STAY rates of player 1 across the different rounds of the trust

game. The upper panel shows the first-move STAY rate of player 1, both for part 1

45Since we measure the type of subjects in the role of player 2 by asking their strategy the first time
they play the trust game, γ may differ between sessions.

46We observe an increase in the information acquisition within a session, but this increase is insignif-
icant.
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Figure 4.6: Evolution of STAY Rate of Player 1 by Treatment
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Notes: The figure shows the evolution of STAY rates of subjects in the role of player 1.

(on the left-hand side) and for part 2 (on the right-hand side). The lower panel shows

equivalent graphs for second-move STAY rates of player 1.

The upper panel of Figure 4.6 reveals that there is a clear difference in the first-

move STAY rate of player 1 between Choice and Imperfect. Subjects in the role of

player 1 choose more frequently STAY on their first move in Imperfect than in Choice.

In addition, in Choice, the first-move STAY rate follows a somewhat decreasing trend,

while in Imperfect it is more steady over time. There are no clear differences in patterns

between Part 1 and Part 2. Across all rounds, the first-move STAY rate in Choice is 85%

in Part 1 and 81% in Part 2. In Imperfect it is 97% in Part 1 and 93% in Part 2.

To test whether these differences are statistically significant, we ran 6 different speci-

fications of regressions that include session-specific random effects. The results are shown

in the upper part of Table 4.2, under ‘First-move’. In all regressions the dependent vari-

able is the percentage of times subjects in the role of player 1 play STAY on their first

move. In specification (1) we include as an independent variable a treatment dummy.

In specification (2), next to the treatment dummy, we control for the ordering of the

treatments by including a dummy that refers to Imperfect being played in Part 1. The

estimated effect is 0.118 in both specifications and is statistically significant. The first-
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move STAY rate of player 1 is thus 11.8 percentage points higher in Imperfect than in

Choice. In specifications (3) and (4), we separately estimate the treatment effect for

Part 1 and Part 2 (in fact, these are between-subjects treatment effects). The estimated

marginal effects are 0.115 (p = 0.001) and 0.121 (p = 0.217), respectively. In specifica-

tions (5) and (6) we report the within-subjects treatment effects. Specification (5) uses

data from sessions where Choice is played in Part 1 and Imperfect in Part 2, and vice

versa in specification (6). The estimated marginal effect in (5) is 0.081 (p = 0.0332). The

estimated marginal effect in (6) is 0.156 (p = 0.001). We conclude that both between

and within subjects, the first-move STAY rate is between 8.1 and 15.6 percentage points

higher (significant) in Imperfect than in Choice.

Next, we focus on second-move STAY rates, shown in the lower panel of Figure 4.6.

The figure shows that treatment effects are smaller than with respect to first-move STAY

rates. Across all rounds, the second-move STAY rate in Choice is 65% in Part 1 and 75%

in Part 2. In Imperfect it is 71% in Part 1 and 75% in Part 2. As shown in the lower

part of Table 4.2, the treatment difference is weakly significant in Part 1, with the STAY

rate being higher in Imperfect than in Choice, but in Part 2 the difference disappears.

Our answer to Question 1(b) is thus partly yes — with respect to player 1’s first move

— and partly no — with respect to player 1’s second move.

In Choice, aggregate trust rates hide quite a lot of information. Indeed, the behavior

of an informed player 1 is expected to crucially depend on whether he is matched with

a trustworthy or selfish player 2. We now study differences in STAY rates of player 1 on

his first and second move depending on whether the matched player 2 is a trustworthy

or a selfish type.

Figure 4.7 shows the evolution of STAY rates of subjects in the role of player 1 who

choose to KNOW. The upper panel shows the first-move STAY rate and the lower panel

the second-move STAY rate (with Part 1 on the left-hand side and Part 2 on the right-

hand side). As can be seen in the figure, first- and second-move STAY rates strongly

depend on the type of the matched player 2. If player 2 is a trustworthy type, subjects

in the role of player 1 are much more inclined to STAY on their first and second move

than if player 2 is a selfish type. The first-move STAY rate is almost 100% throughout

the whole experiment when player 1 knows that the matched player 2 is a trustworthy

type. In the case where player 1 knows that the matched player 2 is a selfish type,

the first-move STAY rate drops to 70% in Part 1 and 56% in Part 2. In addition, the

first-move STAY rate of a player 1 matched with a selfish player 2 exhibits a decreasing

trend over time. Moreover, the second-move STAY rate is almost 90% throughout the

whole experiment when player 1 knows that the matched player 2 is a trustworthy type,

while it drops to 20% when the matched player 2 is a selfish type.
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Table 4.2: Treatment Effects on the STAY Rate of Player 1

(1) (2) (3) (4) (5) (6)

First move

Imperfect 0.118*** 0.118*** 0.115** 0.121 0.081* 0.156***

(0.026) (0.026) (0.034) (0.098) (0.038) (0.036)

Imperfect in Part 1 −0.003

(0.060)

Constant 0.830*** 0.831*** 0.850*** 0.810*** 0.850*** 0.810***

(0.028) (0.045) (0.024) (0.069) (0.027) (0.062)

# Observations 128 128 64 64 64 64

R2 0.129 0.129 0.154 0.115 0.068 0.202

Second move

Imperfect 0.017 0.017 0.054 −0.020 0.083* −0.050

(0.043) (0.043) (0.062) (0.140) (0.063) (0.059)

Imperfect in Part 1 0.037

(0.094)

Constant 0.708*** 0.689*** 0.655*** 0.760*** 0.655*** 0.760***

(0.046) (0.070) (0.044) (0.099) (0.069) (0.078)

# Observations 128 128 64 64 64 64

R2 0.001 0.007 0.012 0.002 0.026 0.011

Notes: The table reports estimations (standard errors in parentheses) from linear regressions that
include session-specific random effects. The dependent variable is the percentage of times player 1
chooses STAY. The independent variable Imperfect is a treatment dummy. ∗∗∗ (∗∗) [∗] indicate that
the estimated coefficient is significant at the 1% (5%) [10%] level. Specification (1) is based on all
observations; (2) is based on all observations, and includes a dummy which is equal to 1 if Imperfect is
played in Part 1 and Choice is played in Part 2; (3) is based on the observations in Part 1; (4) is based
on the observations in Part 2; (5) is based on the observations where Choice is played in Part 1 and
Imperfect is played in Part 2; and (6) is based on the observations where Imperfect is played in Part 1
and Choice is played in Part 2.

Being perfectly informed about player 2’s type makes player 1 choose STAY on his

second move in almost 100% of the cases if player 2 is a trustworthy type and in almost

0% of the cases she is a selfish type. On his first move, however, player 1 still plays

STAY in a substantial fraction of the cases (between 56% and 70% depending on the

part) even if player 2 is a selfish type. This suggests that there may be other reasons

for player 1 to choose STAY on his first move than those discussed in the theoretical

model. One of these might be that (player 1 believes that) sufficiently many subjects in

the role of player 1 choose STAY on both of their moves because they have a preference

to maximize total efficiency or to be trustful. If this is the case, a selfish player 1 has
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Figure 4.7: Evolution of STAY Rate of Player 1 in Choice
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Notes: The figure shows the evolution of STAY rates of subjects in the role of player 1 within the Choice
treatment.

strategic reasons to choose STAY on his first move. That is, if he can make player 2

believe he is a ‘trustful’ person, so that player 2 would choose IN on her first move in

the hope that player 1 chooses STAY on his second move, player 1 will be better off if

he chooses STAY on his first move than when choosing STOP.

Table 4.3 reports results of regressions with session-specific random effects, using data

from Choice where the first- or second-move STAY rate of subjects in the role of player 1

(upper and lower part, respectively) is regressed on a treatment dummy. In all instances,

the treatment effect is large and significant. Overall, as shown in (1), a matched player

2 being a trustworthy type increases the probability of player 1 choosing STAY on his

first move by 37% (p < 0.001), and by 72% (p < 0.001) on his second move.

4.4.1.3. Elicited σ and Player 1’s Behavior

The above results suggest that for a substantial part of the subjects σ < 0. The reason

is that in all sessions, γ is sufficiently high so that if subjects in the role of player 1 would

be selfish, they would prefer to be uninformed in Choice so that no difference is predicted

between Choice and Imperfect. In this section, we study more closely the relation between
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Table 4.3: Effect of Player 2’s Type on Informed Player 1’s STAY Rate in Choice

(1) (2) (3) (4) (5) (6)

First move

Trustworthy 0.367*** 0.367*** 0.296*** 0.435*** 0.296*** 0.435***

(0.045) (0.046) (0.059) (0.069) (0.059) (0.069)

Imp in Part 1 −0.066

(0.046)

Constant 0.628*** 0.662*** 0.698*** 0.561*** 0.698*** 0.561***

(0.037) (0.041) (0.042) (0.049) (0.042) (0.049)

# Observations 122 122 60 62 60 62

R2 0.347 0.358 0.302 0.398 0.303 0.398

Second move

Trustworthy 0.713*** 0.712*** 0.729*** 0.696*** 0.729*** 0.697***

(0.050) (0.050) ( 0.065) (0.076) (0.065) (0.076)

Imp in Part 1 0.066

(0.050)

Constant 0.257*** 0.224*** 0.215*** 0.299*** 0.215*** 0.299***

(0.039) (0.044) (0.048) (0.056) (0.048) (0.056)

# Observations 116 116 58 58 58 58

R2 0.638 0.644 0.686 0.600 0.687 0.600

Notes: The table reports estimations (standard errors in parentheses) from linear regressions that include
session-specific random effects, based on the observations where player 1 chooses to KNOW in Choice.
The dependent variable is the percentage of times player 1 choose STAY. ∗∗∗ (∗∗) [∗] indicate that the
estimated coefficient is significant at the 1% (5%) [10%] level. For an explanation of the 6 specifications,
see note in Table 4.2.

σ elicited in the dictator game played in the first part of the experiment, and behavior

of player 1.

Obviously, this exercise is only relevant if there exists heterogeneity in σ across the

subjects in the first place. To illustrate this is the case, we refer to Figure 4.8, which

shows the distribution of σ. Figure 4.8 shows that the mode is σ = 0; about 35% of

the subjects have σ = 0. This means that the modal subject in the role of player 1 is

a selfish payoff maximizer. The other subjects either have a negative σ, so dislike being

behind in payoff terms, or a positive σ, so have a preference for efficiency.

We now proceed to answering Question 2 (a). To do so, we compute the correlation

between the percentage of times subjects in the role of player 1 in Choice choose to obtain

information about the matched player 2 (i.e., choose KNOW), and the elicited σ for that

subject. We find a (weakly) significant correlation of −0.221 (p = 0.079). This is (weak)
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Figure 4.8: Distribution of σ
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Notes: The figure shows the distribution of σ elicited in the dictator game of 64 subjects in the role of
player 1. It is calculated as follows: σ = minimum X−20

18 .

Table 4.4: Within-Subject Difference in STAY Rates and σ’s

First Move Second Move

Constant 0.237 (0.058)∗∗∗ 0.249 (0.071)∗∗∗

σ -0.551 (0.196)∗∗∗ 0.249 (0.304)

# Observations 47 41

R2 0.150 0.017

Notes: The table reports estimations (standard errors in parentheses) from linear regressions at the
subject level. The dependent variable is the aggregate STAY rate in Imperfect minus the aggregate
STAY rate in Choice conditional on being informed that player 2 is selfish, and conditional on σ < 2

9 .
∗∗∗ (∗∗) [∗] indicate that the estimated coefficient is significant at the 1% (5%) [10%] level.

evidence in favor of σ being negatively related to player 1’s willingness to KNOW the

type of the matched player 2. The answer to Question 2 (a) is thus (weakly) yes.

Next, we study Question 2 (b). To do so, we use the treatment variation within

subjects to study whether the differences in STAY rates between Imperfect and Choice

are related to σ. Specifically, we study the relation between the elicited σ’s and the

within-player 1 difference in the percentage of times he chooses STAY between cases

where he is uninformed (in Imperfect) and cases where he is informed about the matched

player 2 being a selfish type (in Choice). Results from regressions are in Table 4.4.47

The table shows that the within-subject difference in first-move STAY rates between

being uninformed and being informed that the matched player 2 is a selfish type is

significantly positive. In addition, the difference is significantly higher, the lower is σ,

47A similar exercise can be done within Choice, namely between cases where player 1 chose to stay
uninformed versus informed about player 2 being a selfish trustee. Given that player 1 almost always
chose to be informed, we refrained from performing such exercise.
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Figure 4.9: Evolution of First-Move IN Rate of Player 2
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Notes: The figure shows the evolution of first-move IN rates of 31 subjects in the role of player 2 who
do not choose IN on their second move (so selfish types).

provided that σ < 2
9
. This is in line with the theoretical predictions. For the second-

move STAY rates we find that within-subject differences are positive, as expected, but

are not significantly associated with σ. Our answer to Question 2(b) is thus partly yes

— with respect to player 1’s first move — and partly no — with respect to player 1’s

second move.

4.4.2. Player 2’s Behavior

In this section we provide a description of player 2’s behavior. We first study the rate at

which subjects in the role of player 2 choose IN. We focus on the so-called selfish types,

namely, on those subjects who did not choose IN on both moves (or, equivalently, who

chose OUT on their second move). Figure 4.9 shows the first-move IN rates of selfish

players 2 by round in Part 1 (on the left-hand side) and Part 2 (on the right-hand side).

Figure 4.9 shows that there is no clear difference in the first-move IN rate between the

treatments in Part 1. It is approximately 50% in both treatments and does not evolve in

a clear direction over time. In Part 2, however, the first-move IN rate is clearly higher in

Imperfect than in Choice. On average, subjects in the role of (a selfish) player 2 choose

IN on their first move 65% of the time in Imperfect, and only 40% of the time in Choice.

In addition, in Choice this rate decreases over time.

Table 4.5 reports the results from regressions with session-specific random effects,

using the same 6 specifications as in the regressions for player 1, but now using the

first-move IN rate of player 2 as a dependent variable.

As can be seen in the table, the treatment effect is positive, as would be expected by

theory, but it is not statistically significant. Overall, the first-move IN rate is estimated

to be 7.1 percentage points higher in Imperfect than in Choice (p = 0.233 in both (1) and
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Table 4.5: Treatment Effects on First-Move IN Rate of Player 2

(1) (2) (3) (4) (5) (6)

Imperfect 0.071 0.071 0.018 0.125 0.071 0.072

(0.060) (0.060) (0.103) (0.150) (0.085) (0.084)

Imp in Part 1 −0.053

(0.126)

Constant 0.730*** 0.756*** 0.756*** 0.703*** 0.756*** 0.703***

(0.062) (0.094) (0.073) (0.106) (0.061) (0.130)

# Observations 128 128 64 64 64 64

R2 0.011 0.016 0.001 0.029 0.011 0.010

Notes: The table reports estimations (standard errors in parentheses) from linear regressions that include
session-specific random effects. The dependent variable is the percentage of times player 2 chooses IN.
The independent variable Imperfect is a treatment dummy. ∗∗∗ (∗∗) [∗] indicate that the estimated
coefficient is significant at the 1% (5%) [10%] level. For an explanation of the 6 specifications, see note
in Table 4.2.

(2)). Although the magnitude of the marginal effect is larger in Part 2 (cf. column (4)

in the table), the treatment effect not significant either (p = 0.403).

Next, we study whether the behavior of (a selfish) player 2 in Choice depends on

whether the matched player 1 knows about her type. Specifically, we focus on how the

first-move IN rate depends on whether player 1 knows about the type of the matched

player 2 or not. Figure 4.10 depicts the evolution of this first-move IN rate (Part 1 in the

left-hand panel and Part 2 in the right-hand panel). We should note that because so few

subjects in the role of player 1 choose NOT KNOW, the lines related to NOT KNOW

are based on very few data points, which may explain why they are fluctuating to a

large extent. No clear difference can be seen in the figure between cases where player 1

knows about the type of player 2 and cases where he does not know. As shown in Table

4.6, which reports results from regressions with session-specific random effects, although

in the theoretically predicted direction, the effect is not significant in a statistical sense

either.

4.5. Discussion

In summary, we find that in our experimental twice-repeated trust games, trustors typ-

ically choose to be informed about the matched trustee’s type. We also find that being

uninformed leads to significantly more trust today (on the first move) than being in-

formed that the matched trustee is selfish. No significant effect appears on tomorrow’s

(second-move) trust rate, though. The consequence is that trustors are generally not
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Figure 4.10: Evolution of Player 2’s First-Move IN Rate in Choice
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Notes: The figure shows the evolution of first-move IN rates of subjects in the role of player 2 who do
not choose IN on their second move (so selfish types).

Table 4.6: Effect of Knowing on Player 2’s First-Move IN Rate

(1) (2) (3) (4) (5) (6)

Know −0.059 −0.058 0.014 −0.136 0.014 −0.136

(0.113) (0.114) (0.155) (0.172) (0.155) (0.172)

Imp in Part 1 −0.084

(0.147)

Constant 0.501*** 0.544*** 0.500*** 0.500*** 0.500*** 0.500***

(0.089) (0.120) (0.117) (0.133) (0.117) (0.133)

# Observations 53 53 28 25 28 25

R2 0.005 0.017 0.001 0.026 0.001 0.026

Notes: The table reports estimations (standard errors in parentheses) from linear regressions that include
session-specific random effects, based on the observations where player 2 is a selfish type. The dependent
variable is the percentage of times player 2 chooses IN. ∗∗∗ (∗∗) [∗] indicate that the estimated coefficient
is significant at the 1% (5%) [10%] level. For an explanation of the 6 specifications, see note in Table
4.2.

worse off when informed than when uninformed. To illustrate, the average material pay-

off if the trustee is a trustworthy type is 31.65 when informed and is 28.50 when not

informed. If the trustee is a selfish type, the average material payoff of the trustor is

16.74 when informed and 16.45 when not informed.48

Part of the qualitative findings can be organized by allowing for non-standard pref-

erences of the trustor in a model where the trustor is uninformed about the trustee’s

48The average utility à la Charness and Rabin (2002) is very similar to the material payoffs. We
calculate the utilities by using the elicited σ values and the utility function presented in Equation (1).
The average utility if the trustee is a trustworthy type is 31.65 when informed and is 28.50 when not
informed. If the trustee is a selfish type, the average material payoff of the trustor is 16.95 when informed
and 17.34 when not informed.
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type. Specifically, we find that one reason why trustors prefer to know the type of the

matched trustee seems to be that they subtract utility from disliking getting a lower

payoff than others. For one, we find that the percentage of times trustors choose to

be informed is positively associated with the extent of disliking getting a lower payoff,

elicited in a dictator game played before the trust games. Second, we find that this

preference parameter helps to organize how trust rates differ within trustors between be-

ing informed about the matched trustee being a selfish type and being uninformed. We

cannot rule out alternative explanations, however. Regret aversion or betrayal aversion,

for example, may also lead the trustor to prefer to know the type of the trustee (see

Dominguez-Martinez et al. (2014) and Bohnet and Zeckhauser (2004)). In our context,

regret or betrayal averse agents derive disutility from finding out their decisions are not

the ones they would have taken if they had been informed about the trustee’s type. This

would mean that a trustful trustor finding out the trustee did not reciprocate suffers

more than what we have assumed in our model.

Some of the findings do not fit within the proposed theoretical framework, though.

One of these is already mentioned, namely that there is no significant treatment effect

on second-move trust rates. Second, first-move trust rates of trustors who are informed

about the matched trustee being a selfish type are well above 0, namely approximately

50%. Third, no or only small differences are observed in first-move reciprocation rates of

trustees between Choice and Imperfect. We speculate that the reason why the proposed

model does not capture these findings is that it does not allow for the trustee being

uninformed about the type of the trustor. Particularly, by trusting on his first move,

trustor may induce the trustee to believe he is a ‘trustful’ of efficiency-maximizing person.

The trustee then reciprocates on her first move in the hope that the trustor trusts again on

his second move. This mechanism may give incentives to trustors to trust (strategically)

on their first move even when being perfectly informed that the matched trustee is selfish.

In future work, it would be interesting to develop models that allow for such uncertainty.
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Appendix

4.A. Trustors with Social Preferences

4.A.1. Imperfect Information Game

In this section we analyze the game played in the Imperfect treatment, under the as-

sumption that player 1 has the following utility function:

U(x1, x2) = x1 + σ(x2 − x1), (4.2)

where x1 and x1 are the material payoffs for player 1 and player 2. Figure 4.11 illustrates

the utilities of the Imperfect game when the trustor is inequality averse. In the following

Figure 4.11: Imperfect
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we solve the game.

In the last period, a trustworthy player 2 chooses IN and a selfish player 2 chooses

OUT by definition. Player 1 chooses STAY in the last information set if his expected

payoff from choosing STAY is larger than his expected payoff from choosing STOP. Note

that if σ > 2
9

player 1 is better off by playing STAY on his last move irrespective of
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player 2’ move. This is because having a σ > 2
9
, player 1 prefers himself trusting on his

last move and player 2 not reciprocating after that to himself not trusting on this last

move. If, however,σ < 2
9
, player 1, observing the first move of player 2, updates his belief

about player 2’s type using Bayesian updating. In the following we first discuss the case

where σ < 2
9

and then the case where σ > 2
9

separately.

First assume that σ < 2
9
. Denote the updated belief after the first move of player 2

by µ2. Player 1 chooses STAY on his second move if µ232 + (1 − µ2)(20 + σ18) > 24.

That is, player 1 plays STAY on his second move if µ2 >
2−9σ
6−9σ

. 49

We first consider the case when γ > 2−9σ
6−9σ

. Applying Bayes’ Rule µ2 > γ > 2−9σ
6−9σ

. In

this case player 1 chooses STAY on his second move. Player 2 plays IN on her first move

if she is trustworthy. If player 2 is selfish, then she also chooses IN on her first move

since 38 > 30. Player 1 chooses STAY in the first information set if his expected payoff

from choosing STAY is larger than his expected payoff from choosing STOP, that is if

γ32 + (1−γ)(20 +σ18) > 16. This last inequality reduces to γ > −4
12−18σ

. This inequality

always holds with σ < 2
9
, since γ can not be negative. Thus player 1 chooses STAY on

his first move.

We then consider the case when γ < 2−9σ
6−9σ

. We first show that the equilibrium is

in mixed strategies in this case. Let m be the probability that player 1 chooses STAY

on his second move in PG and p be the probability that a selfish player 2 chooses IN

on her first move. Player 1 updates his belief according to Bayes’ Rule. His updated

belief given that player 2 chooses IN on her first move is given by µ2 = γ
γ+p(1−γ)

. We

first show that p cannot take the values 0 and 1 (we follow Anderhub et al. (2002)).

Suppose that p = 0, then by Bayesian updating, µ2 = γ
γ+0(1−γ)

= 1. This implies that

player 1 optimally plays STAY ((1 −m) = 0), in which case player 2 would optimally

choose IN (since 38 > 30) with probability p = 1 contradicting the initial supposition.

Thus p > 0 should be satisfied. Suppose that p = 1. Then by Bayesian updating,

µ2 = γ
γ+1(1−γ)

= γ < 2−9σ
6−9σ

. This implies that m = 0. But then player 2 would chose

OUT on her first move since 30 > 24, which contradicts with the initial supposition that

p = 1. Thus 0 < p < 1 should hold. That is, player 2 uses a mixed strategy on her

first move. In this case, player 1 should also use a mixed strategy on his second move

as otherwise player 2 would optimally play a pure strategy on her first move as well.

Therefore, we have proven that 0 < p < 1 and 0 < m < 1 when γ < 2−9σ
6−9σ

.

Next we calculate the equilibrium mixing probabilities. Player 1, on his second move,

plays STAY with probability m and plays STOP with probability (1 −m). He chooses

m such that a selfish player 2 is indifferent on her first move. Thus we have m38 + (1−
m)24 = 30, yielding m = 3

7
. Player 2, on her first move, plays IN with probability p and

49Note that if σ > 2
9 then 20 + σ18 > 32. In this case, player 1 chooses STAY on his second move.
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plays OUT with probability (1 − p). He chooses p such that player 1 is indifferent on

his second move, that is µ2 = γ
γ+p(1−γ)

= 2−9σ
6−9σ

, yielding p = 4γ
(1−γ)(2−9σ)

. Player 1, on his

first move, plays STAY if his expected payoff from doing so is larger than his expected

payoff from choosing STOP. That is, if γ[m32 + (1 −m)24] + (1 − γ)[p(m(20 + σ18) +

(1 −m)24) + (1 − p)(12 + σ18)] > 16. Substituting m = 3
7

and p = 4γ
(1−γ)(2−9σ)

, we get

γ > 4−36σ+81σ2

36−108σ+81σ2 = (2−9σ
6−9σ

)2. Thus player 1 chooses STAY if 2−9σ
6−9σ

> γ > (2−9σ
6−9σ

)2 and

chooses STOP if γ < (2−9σ
6−9σ

)2. The equilibrium predictions are summarized as follows:

Prediction Imperfect, σ < 2
9
. Let player 2 be a trustworthy type with probability γ and

a selfish type with probability 1 − γ. The theoretical predictions of the Imperfect game

are:

(a) γ > 2−9σ
6−9σ

: Player 1 plays STAY on both moves. Beliefs in the first and second

information set are µ1 = γ and µ2 = γ, respectively. A trustworthy player 2 plays

IN on both moves and a selfish player 2 plays IN on her first move and OUT on her

second move.

(b) (2−9σ
6−9σ

)2 < γ < 2−9σ
6−9σ

: Player 1 plays STAY on his first move and plays STAY with

probability 3
7

and STOP with probability 4
7

on his second move. Beliefs in the first and

second information set are µ1 = γ and µ2 = 2−9σ
6−9σ

, respectively. A trustworthy player

2 plays IN on both moves. A selfish player 2 plays IN with probability 4γ
(1−γ)(2−9σ)

and

OUT with probability 1− 4γ
(1−γ)(2−9σ)

on her first move and plays OUT on her second

move.

(c) γ < (2−9σ
6−9σ

)2: Player 1 plays STOP on his first move and plays STAY with probability
3
7

and STOP with probability 4
7

on his second move. Beliefs in the first and second

information set are µ1 = γ and µ2 = 2−9σ
6−9σ

, respectively. A trustworthy player 2 plays

IN on both moves. A selfish player 2 plays IN with probability 4γ
(1−γ)(2−9σ)

and OUT

with probability 1− 4γ
(1−γ)(2−9σ)

on her first move and OUT on her second move.

Second assume that σ > 2
9
. In this case player 1 chooses STAY on his last move

irrespective of player 2’s type. This is because he is better off if he trusts on his last

move even if player 2 does not reciprocate this trust whenever σ > 2
9
. A trustworthy

player 2 chooses IN on his first move by definition. A selfish player 2 chooses IN on

his first move as well since 38 > 30. Player 1, on his first move, chooses STAY if

16 < γ32 + (1 − γ)(20 + σ18), which always true. The equilibrium predictions are

summarized as follows:

Prediction Imperfect, σ > 2
9
. Let player 2 be a trustworthy type with probability γ

and a selfish type with probability 1− γ. The theoretical predictions of the Choice game
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are: Player 1 plays STAY on his both moves. A trustworthy player 2 plays IN on his

both moves and a selfish player 2 plays IN on her first move and OUT on her second

move.

4.A.2. Choice game

In this section we reconsider the game illustrated in Choice treatment, under the assump-

tion that the utility of player 1 is given by the equation 4.2, illustrated in Figure 4.12.

Figure 4.12: Choice with inequality averse trustors

1− γγ
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24, 24
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32, 32

2
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Stop

24, 24

Stay

Out

20 + σ18, 38

In

32, 32

2

Stop

16, 16

Stay

1

Out

12 + σ18, 30

In

2

Stop

24, 24

Stay

1

Out

20 + σ18, 38

In

32, 32

2

Before calculating the optimal choice of player 1, that is, whether player 1 chooses

to KNOW or NOT KNOW the type of player 2, we solve the subgames depending on

player 1’s choice in period 2.

4.A.2.1. Player 1 chooses KNOW

Suppose that player 1 chooses KNOW in period 2 and we solve the game by backward

induction. In the last period of the game, a trustworthy player 2 chooses IN and a

selfish player 2 chooses OUT. Player 1, on his second move, chooses STAY if player 2
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is trustworthy since 32 > 24. Player 1, on his second move, chooses STAY if player 2

is selfish only when 20 + σ18 > 24. This is the case whenever σ > 2
9
. First consider

the case when σ > 2
9
, so that player 1 chooses STAY on his second move when player

2 is selfish. A trustworthy player 2 chooses IN on his first move by definition. A selfish

player 2 chooses IN on her first move as 38 > 30. Player 1, on his first move , chooses

STAY if he is matched with a trustworthy player 2 since 32 > 16. Player 1, on his first

move, chooses STAY if he is matched with a selfish player 2 only when 20 + σ18 > 16.

This inequality always holds since σ > 2
9
. Second consider the case when σ < 2

9
, so

that player 1 chooses STOP on his second move when player 2 is selfish. A trustworthy

player 2 chooses IN on his first move by definition. A selfish player 2 chooses OUT on

her first move as 30 > 24. Player 1, on his first move, chooses STAY if 16 < 12+σ18. As

σ < 2
9
, this inequality does not hold, implying player 1 chooses STOP on his first move.

So, in summary, given that player 1 chooses KNOW in period 2, we have two different

predictions depending on the value of σ. In summary if σ < 2
9
: A trustworthy player 2

will choose IN on both moves and player 1 chooses STAY on both moves in equilibrium.

A selfish player 2 chooses OUT on both moves and player 1 matched with a selfish player

2 chooses STOP on both moves in equilibrium. If σ > 2
9
: A trustworthy player 2 will

choose IN on both moves and player 1 chooses STAY on both moves in equilibrium.

A selfish player 2 chooses IN on his first move, OUT on his second move and player 1

matched with a selfish player 2 chooses STAY on both moves in equilibrium.

4.A.2.2. Player 1 chooses NOT KNOW

When player 1 chooses NOT KNOW, we are in the Imperfect game. We refer to section

4.2.1 for the calculation of the equilibrium in this subgame.

4.A.2.3. Choice to KNOW or NOT KNOW

We have shown that the predictions for the trust game in the cases where σ < 2
9

and

σ > 2
9

are different, as explained in the previous section. First we discuss the case where

σ < 2
9

and we second discuss the case where σ > 2
9
.

We now calculate the optimal choice of player 1 in period 2, when σ < 2
9
. Player 1

chooses KNOW if his expected payoff from playing KNOW is larger than his expected

payoff from NOT KNOW. We consider the 3 ranges for γ that are relevant given that

player 1 does NOT KNOW (see 4.A.1): γ > 2−9σ
6−9σ

, 2−9σ
6−9σ

> γ > (2−9σ
6−9σ

)2 and γ < (2−9σ
6−9σ

)2.

First, we consider the case where γ > 2−9σ
6−9σ

. Player 1 chooses KNOW in this case if

γ32 + (1− γ)16 > γ32 + (1− γ)(20 + σ18). (4.3)
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This inequality holds only when σ < −2
9
. Thus player 1 chooses KNOW if σ < −2

9
and

chooses NOT KNOW if σ > −2
9
.

Second, we consider the case where (2−9σ
6−9σ

)2 < γ < 2−9σ
6−9σ

. Player 1 chooses KNOW in

this case if

γ32 + (1− γ)16 > γ[R32 + (1−m)24] + (1− γ)[p(m(20 + σ18) + (1−m)24) + (1− p)(12 + σ18)].

(4.4)

Plugging in the equilibrium values for m and p derived above, this inequality holds only

when γ < 4−36σ+81σ2

20−36σ+81σ2 . It is important to note that 4−36σ+81σ2

20−36σ+81σ2 <
2−9σ
6−9σ

only if σ > −2
9

and 4−36σ+81σ2

20−36σ+81σ2 > 2−9σ
6−9σ

if σ < −2
9
. In summary, whenever (2−9σ

6−9σ
)2 < γ < 2−9σ

6−9σ
the

optimal decision of player 1 in period 2 is summarized as follows: if σ < −2
9

player 1

chooses KNOW for (2−9σ
6−9σ

)2 > γ > 4−36σ+81σ2

20−36σ+81σ2 and if σ > −2
9

player 1 chooses KNOW

whenever (2−9σ
6−9σ

)2 < γ < 4−36σ+81σ2

20−36σ+81σ2 and chooses NOT KNOW whenever 4−36σ+81σ2

20−36σ+81σ2 >

γ > 2−9σ
6−9σ

. Player 1 is indifferent between choosing KNOW and NOT KNOW whenever

γ = 4−36σ+81σ2

20−36σ+81σ2 .

Last, we consider the case where γ < (2−9σ
6−9σ

)2. Player 1 chooses KNOW in this case

if

γ32 + (1− γ)16 > 16.

This inequality always holds, thus player 1 chooses KNOW whenever γ < (2−9σ
6−9σ

)2.

We summarize the equilibrium predictions as follows:

Prediction Choice, σ < 2
9
. Let player 2 be a trustworthy type with probability γ and a

selfish type with probability 1− γ. The theoretical predictions of the Choice game are:

(a) γ > 2−9σ
6−9σ

: Player 1 plays NOT KNOW if σ > −2
9

and KNOW if σ < −2
9
. Player 1

plays STAY on both moves if he plays NOT KNOW. Beliefs in the first and second

information set are µ1 = γ and µ2 = γ, respectively. When player 1 plays KNOW,

then he plays STAY on both moves when player 2 is a trustworthy type and STOP

on both moves when player 2 is a selfish type. A trustworthy player 2 plays IN on

both moves when player 1 plays KNOW or NOT KNOW. A selfish player 2 plays IN

on her first move and OUT on her second move when player 1 plays NOT KNOW.

A selfish player 2 plays OUT on both moves when player 1 plays KNOW.

(b) (2−9σ
6−9σ

)2 < γ < 2−9σ
6−9σ

: Player 1 plays KNOW if σ < −2
9
. If σ > −2

9
, player 1 plays

KNOW whenever γ < 4−36σ+81σ2

20−36σ+81σ2 and NOT KNOW whenever γ > 4−36σ+81σ2

20−36σ+81σ2 .

Player 1 plays STAY on his first move and plays STAY with probability 3
7

and STOP

with probability 4
7

on his second move when he plays NOT KNOW. Beliefs in the
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first and second information set are µ1 = γ and µ2 = γ, respectively. When player

1 plays KNOW, he plays STAY on both moves if player 2 is a trustworthy type and

STOP on both moves if player 2 is a selfish type. A trustworthy player 2 plays IN

on both moves when player 1 plays KNOW or NOT KNOW. A selfish player 2 plays

IN with probability 4γ
(1−γ)(2−9σ)

and OUT with probability 1p− 4γ
(1−γ)(2−9σ)

on her first

move and plays OUT on her last move when player 1 plays NOT KNOW. A selfish

player 2 plays OUT on both moves when player 1 plays KNOW.

(c) γ < (2−9σ
6−9σ

)2: Player 1 plays KNOW. Player 1 plays STOP on his first move and

plays STAY with probability 3
7

and STOP with probability 4
7

on his second move when

he plays NOT KNOW. Beliefs in the first and second information set are µ1 = γ and

µ2 = γ, respectively. When player 1 plays KNOW, he plays STAY on both moves

if player 2 is a trustworthy type and STOP on both moves if player 2 is a selfish

type. A trustworthy player 2 plays IN on both moves when player 1 chooses KNOW

or NOT KNOW. A selfish player 2 plays IN with probability 4γ
(1−γ)(2−9σ)

and OUT

with probability 1− 4γ
(1−γ)(2−9σ)

on her first move and plays OUT on her second move

when player 1 plays NOT KNOW. A selfish player 2 plays OUT on both moves when

player 1 chooses KNOW.

We now calculate the optimal choice of player 1 in period 2, when σ > 2
9
. When player

1 chooses NOT KNOW, we are in the Imperfect game and when he chooses KNOW we

are in the Choice game. We have shown that, in the Imperfect game: a trustworthy

player 2 will choose IN on both moves and player 1 chooses STAY on both moves in

equilibrium, a selfish player 2 chooses IN on his first move, OUT on his second move

and player 1 chooses STAY on both moves. If player 1 chooses KNOW in period 2, we

have shown that: a trustworthy player 2 will choose IN on both moves and player 1

chooses STAY on both moves in equilibrium, a selfish player 2 chooses IN on his first

move, OUT on his second move and player 1 chooses STAY on both moves. This, the

equilibrium predictions are the same for the trust game when player 1 chooses KNOW or

NOT KNOW on his first move. So that the expected payoff of player 1 is the same when

he chooses KNOW or NOT KNOW, implying that he is indifferent between choosing

KNOW or NOT KNOW in equilibrium.

Prediction Choice, σ > 2
9
. Let player 2 be a trustworthy type with probability γ and

a selfish type with probability 1− γ. The theoretical predictions of the Choice game are:

Player 1 is indifferent between playing KNOW or NOT KNOW. He plays STAY on his

both moves. A trustworthy player 2 plays IN on his both moves and a selfish player 2

plays IN on his first move and OUT on his second move.
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4.B. Instructions

General Instructions

You are participating in an experiment on economic decision making and will be asked

to make a number of decisions. Please do not talk or communicate in any other way

with other participants. If you have a question, raise your hand. Please read these

instructions carefully as they describe how you can earn money.

The experiment is anonymous: that is, your identity will not be revealed to others and

the identity of others will not be revealed to you.

The experiment consists of 3 parts. At the beginning of each part you will receive

instructions describing the game that will be played. All the interaction between you

and other participants will take place through the computers.

The experiment is anonymous: that is, your identity will not be revealed to others and

the identity of others will not be revealed to you.

During the experiment your earnings will be expressed in points. Points will be converted

to Euros at the following rate: 10 points = 2 EUR. Your total earnings will be the sum

of your earnings in each part. You will be paid your earnings in cash at the end of the

experiment.

SEE NEXT PAGE
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Instructions Part 1 

 

In Part 1 of the experiment, you will be randomly paired with another participant. You will be 

assigned the role of Player A or the role of Player B. Each Player A is matched with a Player B. You 

will get to see which role you are assigned on the computer screen before Part 1 starts.  

 

Consider the decision situation shown in this figure: 

 

 

 

 

 

 

 

 

 

 

If Player A chooses LEFT, both players receive an amount X. If Player A chooses RIGHT, Player A 

earns 20 points and Player B earns 38 points. The earnings of both players only depend on the 

decision of Player A. Player B does not make any decision. 

 

The task for Player A is to choose a minimum X above which he/she would choose LEFT, where the 

minimum X should be between 1 and 34. At the end of the experiment, a number X between 1 and 34 

will be randomly drawn, and the earnings Player A and Player B receive, depend on this number, and 

the corresponding choice by Player A of the minimum X. 

 

Example 1: Suppose that Player A chooses a minimum X of 10, and suppose the randomly drawn 

number X is equal to 20. In this example the minimum X is smaller than the randomly drawn number 

(10 < 20), which means that Player A prefers to choose LEFT. The earnings will thus be as follows: 

20 points for Player A, and 20 points for Player B. 

 

Example 2: Suppose that Player A chooses a minimum X of 20, and suppose the randomly drawn 

number X is equal to 15. In this example the minimum X is larger than the randomly drawn number 

(20 > 15), which means that Player A prefers to choose RIGHT.  The earnings will thus be as follows: 

20 points for Player A, and 38 points for Player B. 

 

Player A earns X 

Player B earns X 

 

Player A chooses 

RIGHT LEFT 

Player A earns 20 

Player B earns 38 
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Instructions Part 2 

 

In Part 2 of the experiment, you will be randomly paired with another participant. You will be 

assigned the role of Player A, and the matched participant will be assigned the role of Player B.  

 

The game 

Your task will be to make decisions for the decision situation presented in the attached figure. There 

are at most 4 periods. In period 1 Player A chooses either STAY or STOP. If Player A chooses STOP, 

the game ends, and if Player A chooses STAY, the game continues. In period 2 Player B chooses 

either IN or OUT. If Player B chooses OUT, the game ends, and if Player B chooses IN, the game 

continues. In period 3 Player A chooses either STAY or STOP. If Player A chooses STOP, the game 

ends, and if Player A chooses STAY, the game continues. In period 4 Player B chooses either IN or 

OUT, and the game ends. The earnings in points of both players, depending on the choices made, are 

given in the boxes. 

 

As you can see from the figure, Player A has three possible strategies:  

(1) STOP in period 1, 

or (2) STAY in period 1 and STOP in period 3, 

or (3) STAY in period 1 and STAY in period 3. 

 

Also Player B has three possible strategies:  

(1) OUT in period 2,  

or (2) IN in period 2 and OUT in period 4,  

or (3) IN in period 2 and IN in period 4. 

 

This is the sequence in which choices will be asked for: 

 

Step 1: Player B will be asked to choose between the following two options: 

o IN in period 2 and IN in period 4 

OR 

o OUT in period 2 or IN in period 2 and OUT in period 4 

 

Step 2:  

 The percentage of participants in the role of Player B who choose IN in period 2 and IN in 

period 4 in Step 1 in this session will be communicated to all participants (Player A and 

Player B) 
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 Player A (you) will get the choice to get information about the choice by the matched Player 

B made in Step 1. You will be asked: Do you want to know which choice Player B made in 

Step 1?  

If you answer Yes to this question, you get information about B’s decision in Step 1.  

If you answer No to this question, you get no information about B’s decision in Step 1.  

Player B will be informed about this communication at the point he/she is asked to make a 

choice in Step 3, only if you answer Yes to this question.  

 

Step 3: 

Choice Player A: Player A will be asked to choose between the following three options: 

o STAY in period 1 and STAY in period 3  

OR 

o STAY in period 1 and STOP in period 3 

OR 

o STOP in period 1 

Choice Player B:  

 If Player B has chosen IN in period 2 and IN in period 4 (in Step 1), then there is no choice. 

 If Player B has not chosen IN in period 2 and IN in period 4 (in Step 1), then Player B will be 

asked to choose between the following two options: 

o IN in period 2 and OUT in period 4 

OR 

o OUT in period 2  

 

Number of rounds 

The task described will be repeated 10 times. At the beginning of each of the 10 rounds, the pairs will 

be randomly reshuffled. 

 

In each round, choices will be asked as described above. However, the choice made by Player B in 

Step 1 will be kept the same in all of the 10 rounds.  

 

At the end of the experiment, one out of the 10 rounds will be randomly drawn for payment. 

 

Example 

Step 1: Suppose that Player B chooses IN in period 2 and IN in period 4.  

Step 2: Suppose that 3 out of 16 participants in the role of Player B have chosen IN in period 2 and IN 

in period 4 (in Step 1). This information will be shown on the computer screen. Additionally, if Player 
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A chooses to get information about the matched Player B’s choice in Step 1, this information is also 

shown. 

Step 3: Suppose that Player A chooses STAY in period 1 and STAY in period 3.  

 

In this example, earnings would be calculated as follows: 

- Period 1: Player A chooses STAY. Therefore, the game continues to period 2.  

- Period 2: Player B chooses IN. Therefore, the game continues to period 3. 

- Period 3: Player A chooses STAY. Therefore, the game continues to period 4.  

- Period 4: Player A chooses IN.  

In this example, Player A gets 32 points and Player B gets 32 points. 

 

 

 

 

 

 

 

 

 

Period 1: 

Period 4: 

Period 3: 

Period 2: 

Player A earns 32 

Player B earns 32 

 

STOP STAY 

Player A chooses 

Player A earns 16 

Player B earns 16 

Player B chooses 

OUT IN 

Player A earns 12 

Player B earns 30 

Player A chooses 

STOP STAY 

Player A earns 24 

Player B earns 24 

Player B chooses 

OUT IN 

Player A earns 20 

Player B earns 38 
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Instructions Part 2 

 

In Part 2 of the experiment, you will be randomly paired with another participant. You will be 

assigned the role of Player B, and the matched participant will be assigned the role of Player A.  

 

The game 

Your task will be to make decisions for the decision situation presented in the attached figure. There 

are at most 4 periods. In period 1 Player A chooses either STAY or STOP. If Player A chooses STOP, 

the game ends, and if Player A chooses STAY, the game continues. In period 2 Player B chooses 

either IN or OUT. If Player B chooses OUT, the game ends, and if Player B chooses IN, the game 

continues. In period 3 Player A chooses either STAY or STOP. If Player A chooses STOP, the game 

ends, and if Player A chooses STAY, the game continues. In period 4 Player B chooses either IN or 

OUT, and the game ends. The earnings in points of both players, depending on the choices made, are 

given in the boxes. 

 

As you can see from the figure, Player A has three possible strategies:  

(1) STOP in period 1, 

or (2) STAY in period 1 and STOP in period 3, 

or (3) STAY in period 1 and STAY in period 3. 

 

Also Player B has three possible strategies:  

(1) OUT in period 2,  

or (2) IN in period 2 and OUT in period 4,  

or (3) IN in period 2 and IN in period 4. 

 

This is the sequence in which choices will be asked for: 

 

Step 1: Player B will be asked to choose between the following two options: 

o IN in period 2 and IN in period 4 

OR 

o OUT in period 2 or IN in period 2 and OUT in period 4 

 

Step 2: The percentage of participants in the role of Player B who choose IN in period 2 and IN in 

period 4 in Step 1 in this session will be communicated to all participants (Player A and Player B). 
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Step 3: 

Choice Player A: Player A will be asked to choose between the following three options: 

o STAY in period 1 and STAY in period 3  

OR 

 

o STAY in period 1 and STOP in period 3 

OR 

o STOP in period 1 

Choice Player B:  

 If Player B has chosen IN in period 2 and IN in period 4 (in Step 1), then there is no choice. 

 If Player B has not chosen IN in period 2 and IN in period 4 (in Step 1), then Player B will be 

asked to choose between the following two options: 

o IN in period 2 and OUT in period 4 

OR 

o OUT in period 2  

 

Number of rounds 

The task described will be repeated 10 times. At the beginning of each of the 10 rounds, the pairs will 

be randomly reshuffled. 

 

In each round, choices will be asked as described above. However, the choice made by Player B in 

Step 1 will be kept the same in all of the 10 rounds.  

 

At the end of the experiment, one out of the 10 rounds will be randomly drawn for payment. 

 

Example 

Step 1: Suppose that Player B chooses IN in period 2 and IN in period 4.  

Step 2: Suppose that 3 out of 16 participants in the role of Player B have chosen IN in period 2 and IN 

in period 4 (in Step 1). This information will be shown on the computer screen. 

Step 3: Suppose that Player A chooses STAY in period 1 and STAY in period 3.  

 

In this example, earnings would be calculated as follows: 

- Period 1: Player A chooses STAY. Therefore, the game continues to period 2.  

- Period 2: Player B chooses IN. Therefore, the game continues to period 3. 

- Period 3: Player A chooses STAY. Therefore, the game continues to period 4.  

- Period 4: Player A chooses IN.  
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In this example, Player A gets 32 points and Player B gets 32 points. 

 

 

 

 

 

 

 

 

 

 

 

 

Period 1: 

Period 4: 

Period 3: 

Period 2: 

Player A earns 32 

Player B earns 32 

 

STOP STAY 

Player A chooses 

Player A earns 16 

Player B earns 16 

Player B chooses 

OUT IN 

Player A earns 12 

Player B earns 30 

Player A chooses 

STOP STAY 

Player A earns 24 

Player B earns 24 

Player B chooses 

OUT IN 

Player A earns 20 

Player B earns 38 
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Instructions Part 2 

 

In Part 2 of the experiment, you will be randomly paired with another participant. You will be 

assigned the role of Player A or Player B, and the matched participant will be assigned the other role.  

 

The game 

Your task will be to make decisions for the decision situation presented in the attached figure. There 

are at most 4 periods. In period 1 Player A chooses either STAY or STOP. If Player A chooses STOP, 

the game ends, and if Player A chooses STAY, the game continues. In period 2 Player B chooses 

either IN or OUT. If Player B chooses OUT, the game ends, and if Player B chooses IN, the game 

continues. In period 3 Player A chooses either STAY or STOP. If Player A chooses STOP, the game 

ends, and if Player A chooses STAY, the game continues. In period 4 Player B chooses either IN or 

OUT, and the game ends. The earnings in points of both players, depending on the choices made, are 

given in the boxes. 

 

As you can see from the figure, Player A has three possible strategies:  

(1) STOP in period 1, 

or (2) STAY in period 1 and STOP in period 3, 

or (3) STAY in period 1 and STAY in period 3. 

 

Also Player B has three possible strategies:  

(1) OUT in period 2,  

or (2) IN in period 2 and OUT in period 4,  

or (3) IN in period 2 and IN in period 4. 

 

This is the sequence in which choices will be asked for: 

 

Step 1: Player B will be asked to choose between the following two options: 

o IN in period 2 and IN in period 4 

OR 

o OUT in period 2 or IN in period 2 and OUT in period 4 

 

Step 2: The percentage of participants in the role of Player B who choose IN in period 2 and IN in 

period 4 in Step 1 in this session will be communicated to all participants (Player A and Player B). 
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Step 3: 

Choice Player A: Player A will be asked to choose between the following three options: 

o STAY in period 1 and STAY in period 3  

OR 

 

o STAY in period 1 and STOP in period 3 

OR 

o STOP in period 1 

Choice Player B:  

 If Player B has chosen IN in period 2 and IN in period 4 (in Step 1), then there is no choice. 

 If Player B has not chosen IN in period 2 and IN in period 4 (in Step 1), then Player B will be 

asked to choose between the following two options: 

o IN in period 2 and OUT in period 4 

OR 

o OUT in period 2  

 

Number of rounds 

The task described will be repeated 10 times. At the beginning of each of the 10 rounds, the pairs will 

be randomly reshuffled. 

 

In each round, choices will be asked as described above. However, the choice made by Player B in 

Step 1 will be kept the same in all of the 10 rounds.  

 

At the end of the experiment, one out of the 10 rounds will be randomly drawn for payment. 

 

Example 

Step 1: Suppose that Player B chooses IN in period 2 and IN in period 4.  

Step 2: Suppose that 3 out of 16 participants in the role of Player B have chosen IN in period 2 and IN 

in period 4 (in Step 1). This information will be shown on the computer screen. 

Step 3: Suppose that Player A chooses STAY in period 1 and STAY in period 3.  

 

In this example, earnings would be calculated as follows: 

- Period 1: Player A chooses STAY. Therefore, the game continues to period 2.  

- Period 2: Player B chooses IN. Therefore, the game continues to period 3. 

- Period 3: Player A chooses STAY. Therefore, the game continues to period 4.  

- Period 4: Player A chooses IN.  
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In this example, Player A gets 32 points and Player B gets 32 points. 

 

 

 

 

 

 

 

 

 

 

 

 

Period 1: 

Period 4: 

Period 3: 

Period 2: 

Player A earns 32 

Player B earns 32 

 

STOP STAY 

Player A chooses 

Player A earns 16 

Player B earns 16 

Player B chooses 

OUT IN 

Player A earns 12 

Player B earns 30 

Player A chooses 

STOP STAY 

Player A earns 24 

Player B earns 24 

Player B chooses 

OUT IN 

Player A earns 20 

Player B earns 38 
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Instructions Part 3 

 

In Part 3 of the experiment, the same decision situation as in Part 2 appears, and all participants keep 

the same role as in Part 2.  

 

The same task as the one in Part 2 will be repeated another 10 times. In each round, choices will be 

asked as described in Part 2. However, Player B has no choice to make in Step 1 because this choice 

is kept the same as in Part 2 of the experiment in all of the 10 rounds. At the beginning of each of the 

10 rounds, the pairs will be randomly reshuffled. 

 

Now, in Step 2, Player A (you) will get the choice to get information about the choice by the matched 

Player B made in Step 1. You will be asked: Do you want to know which choice Player B made in 

Step 1?  

 If you answer Yes to this question, you get information about B’s decision in Step 1.  

 If you answer No to this question, you get no information about B’s decision in Step 1.  

 

Player B will be informed about this communication at the point he/she is asked to make a choice in 

Step 3, only if you answer Yes to this question.  

 

At the end of the experiment, one out of the 10 rounds will be randomly drawn for payment. 
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Instructions Part 3 

 

In Part 3 of the experiment, the same decision situation as in Part 2 appears, and all participants keep 

the same role as in Part 2.  

 

The same task as the one in Part 2 will be repeated another 10 times. In each round, choices will be 

asked as described in Part 2. However, Player B (you) has no choice to make in Step 1 because this 

choice is kept the same as in Part 2 of the experiment in all of the 10 rounds. At the beginning of each 

of the 10 rounds, the pairs will be randomly reshuffled. 

 

At the end of the experiment, one out of the 10 rounds will be randomly drawn for payment. 
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Instructions Part 3 

 

In Part 3 of the experiment, the same decision situation as in Part 2 appears, and all participants keep 

the same role as in Part 2.  

 

The same task as the one in Part 2 will be repeated another 10 times. In each round, choices will be 

asked as described in Part 2. However, Player B has no choice to make in Step 1 because this choice 

is kept the same as in Part 2 of the experiment in all of the 10 rounds. At the beginning of each of the 

10 rounds, the pairs will be randomly reshuffled. 

 

Another difference is that now, in Step 2, Player A will no longer obtain information about the choice 

by the matched Player B made in Step 1, and Player B knows this. (The instructions are the same for 

everyone.) 

 

At the end of the experiment, one out of the 10 rounds will be randomly drawn for payment. 
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