13 research outputs found

    Pediatric Cardiac Xenotransplantation: Recommendations for the Ethical Design of Clinical Trials

    Get PDF
    For children with complex congenital heart problems, cardiac allotransplantation is sometimes the best therapeutic option. However, availability of hearts for pediatric patients is limited, resulting in a long and growing waitlist, and a high mortality rate while waiting. Cardiac xenotransplantation has been proposed as one therapeutic alternative for neonates and infants, either in lieu of allotransplantation or as a bridge until an allograft becomes available. Scientific and clinical developments in xenotransplantation appear likely to permit cardiac xenotransplantation clinical trials in adults in the coming years. The ethical issues around xenotransplantation of the heart and other organs and tissues have recently been examined, but to date, only limited literature is available on the ethical issues that are attendant with pediatric heart xenotransplantation. Here, we summarize the ethical issues, focusing on (i) whether cardiac xenotransplantation should proceed in adults or children first, (ii) pediatric recipient selection for initial xenotransplantation trials, (iii) special problems regarding informed consent in this context, and (iv) related psychosocial and public perception considerations. We conclude with specific recommendations regarding ethically informed design of pediatric heart xenotransplantation trials

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research

    Ischaemic conditioning and reperfusion injury

    Get PDF
    The 30-year anniversary of the discovery of 'ischaemic preconditioning' is in 2016. This endogenous phenomenon can paradoxically protect the heart from acute myocardial infarction by subjecting it to one or more brief cycles of ischaemia and reperfusion. Apart from complete reperfusion, this method is the most powerful intervention known for reducing infarct size. The concept of ischaemic preconditioning has evolved into 'ischaemic conditioning', a term that encompasses a number of related endogenous cardioprotective strategies, applied either directly to the heart (ischaemic preconditioning or postconditioning) or from afar, for example a limb (remote ischaemic preconditioning, perconditioning, or postconditioning). Investigations of signalling pathways underlying ischaemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. Over the past 3 decades, a number of ischaemic and pharmacological cardioprotection strategies, discovered in experimental studies, have been examined in the clinical setting of acute myocardial infarction and CABG surgery. The results from many of the studies have been disappointing, and no effective cardioprotective therapy is currently used in clinical practice. Several large, multicentre, randomized, controlled clinical trials on cardioprotection have highlighted the challenges of translating ischaemic conditioning and pharmacological cardioprotection strategies into patient benefit. However, a number of cardioprotective therapies have shown promising results in reducing infarct size and improving clinical outcomes in patients with ischaemic heart disease

    Accuracy of Cardiac Magnetic Resonance Imaging in Diagnosing Pediatric Cardiac Masses: A Multicenter Study

    No full text
    BACKGROUND: After diagnosis of a cardiac mass, clinicians must weigh the benefits and risks of ascertaining a tissue diagnosis. Limited data are available on the accuracy of previously developed noninvasive pediatric cardiac magnetic resonance (CMR)-based diagnostic criteria. OBJECTIVES: The goals of this study were to: 1) evaluate the CMR characteristics of pediatric cardiac masses from a large international cohort; 2) test the accuracy of previously developed CMR-based diagnostic criteria; and 3) expand diagnostic criteria using new information. METHODS: CMR studies (children 0-18 years of age) with confirmatory histological and/or genetic diagnosis were analyzed by 2 reviewers, without knowledge of prior diagnosis. Diagnostic accuracy was graded as: 1) single correct diagnosis; 2) correct diagnosis among a differential; or 3) incorrect diagnosis. RESULTS: Of 213 cases, 174 (82%) had diagnoses that were represented in the previously published diagnostic criteria. In 70% of 174 cases, both reviewers achieved a single correct diagnosis (94% of fibromas, 71% of rhabdomyomas, and 50% of myxomas). When ≤2 differential diagnoses were included, both reviewers reached a correct diagnosis in 86% of cases. Of 29 malignant tumors, both reviewers indicated malignancy as a single diagnosis in 52% of cases. Including ≤2 differential diagnoses, both reviewers indicated malignancy in 83% of cases. Of 6 CMR sequences examined, acquisition of first-pass perfusion and late gadolinium enhancement were independently associated with a higher likelihood of a single correct diagnosis. CONCLUSIONS: CMR of cardiac masses in children leads to an accurate diagnosis in most cases. A comprehensive imaging protocol is associated with higher diagnostic accuracy
    corecore