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Abstract | 2016 will be the 30-year anniversary of the discovery of ‘ischaemic 

preconditioning’. This endogenous phenomenon can paradoxically protect the heart 

from acute myocardial infarction by subjecting it to one or more brief cycles of 

ischaemia and reperfusion. After complete reperfusion, this method is the most powerful 

intervention known for reducing infarct size. The concept of ischaemic preconditioning 

has evolved into ‘ischaemic conditioning’, a term that encompasses a number of related 

endogenous cardioprotective strategies, applied either directly to the heart (ischaemic 

preconditioning or postconditioning) or from afar, for example a limb (remote ischaemic 

preconditioning, perconditioning, or postconditioning). Investigations of signalling 

pathways underlying ischaemic conditioning have identified a number of therapeutic 

targets for pharmacological manipulation. Over the past 3 decades, a number of 

ischaemic and pharmacological cardioprotection strategies, discovered in experimental 
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studies, have been examined in the clinical setting of acute myocardial infarction and 

CABG surgery. The results have been disappointing, and no effective cardioprotective 

therapy is currently used in clinical practice. Several large, multicentre, randomized, 

controlled clinical trials on cardioprotection have highlighted the challenges of 

translating ischaemic conditioning and pharmacological cardioprotection strategies into 

patient benefit. However,  in the past a number of cardioprotective therapies have 

shown promising results in reducing infarct size and improving clinical outcomes in 

patients with ischaemic heart disease.  

 

 

Ischaemic heart disease (IHD) is the leading cause of death and disability worldwide. 

ST-segment elevation myocardial infarction (STEMI) is a major emergency 

manifestation of IHD, usually precipitated by acute thrombotic occlusion of a main 

coronary artery at the site of a ruptured atherosclerotic plaque. The treatment of choice 

for reducing the size of a myocardial infarct (MI), preserving left ventricular (LV) systolic 

function, and preventing the onset of heart failure in patients with STEMI is reperfusion, 

using primary percutaneous coronary intervention (PPCI). However, despite timely 

PPCI, mortality and morbidity in patients with STEMI remain substantial, with death 

reported in 7% and heart failure in 22% of patients at 1 year after the event1. Although 

mortality of patients with STEMI has declined over the past 10-15 years owing to 

improvements in secondary preventative therapy, the number of patients who develop 

heart failure has increased. The size of an MI is a major determinant of LV systolic 

function and the propensity for developing heart failure; therefore novel therapies that 



 

3 

 

reduce infarct size and can be administered as adjuncts to PPCI are needed to improve 

patient survival and prevent the onset of heart failure. 

 In patients with IHD and severe multivessel coronary disease, the heart is more 

commonly revascularized using CABG surgery. This operation can be complicated by 

perioperative myocardial injury (PMI), which can result from acute global myocardial 

ischaemia–reperfusion injury (IRI) when going onto and coming off cardiopulmonary 

bypass2, 3, and can lead to LV systolic impairment, the onset of heart failure, and risk of 

death after surgery. Owing to the ageing population and the growing prevalence of 

comorbidities (such as diabetes mellitus, obesity, hypertension, and valve disease), 

patients undergoing CABG surgery are at a higher risk of PMI than ever before. The 

extent of PMI is a critical determinant of clinical outcomes after surgery4-6. Novel 

therapies are, therefore, required for this patient group to reduce the magnitude of PMI, 

preserve LV systolic function, and prevent the onset of heart failure. Notably, myocardial 

injury and cardiomyocyte death after CABG surgery is caused by acute IRI similar to 

revascularization after STEMI; however, factors such as direct handling of the heart, 

coronary microembolization, and inflammation also contribute and might influence 

effectiveness of therapies. For both patient groups, ‘ischaemic conditioning’ provides an 

endogenous strategy that can protect the heart from the detrimental effects of acute IRI, 

and which has the potential to improve clinical outcomes in patients with IHD. Ischaemic 

conditioning is the term given to a number of related endogenous cardioprotective 

strategies, all based on rendering the heart tolerant to acute IRI by conditioning it with 

one or more brief cycles of ischaemia and reperfusion (FIG. 1). In this Review, we 

provide an overview of the various types of ischaemic conditioning and pharmacological 
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cardioprotection. The challenges of translating these methods into the clinical setting 

are highlighted, and future therapies that have the potential to improve clinical outcomes 

in patients with IHD are discussed. 

 

[H1] Myocardial reperfusion injury 

In 1985, Braunwald & Kloner wrote that “myocardial reperfusion may be viewed as a 

double-edged sword”7. Although strategies are in place to minimize acute myocardial 

ischaemic injury for patients presenting with an acute STEMI or in patients undergoing 

cardiac surgery, ‘myocardial reperfusion injury’ — the myocardial injury and 

cardiomyocyte death that paradoxically occurs with the acute reperfusion of ischaemic 

myocardium — remains a neglected therapeutic target in both these patient groups8-11. 

Therefore, although myocardial reperfusion is essential to salvage viable myocardium, it 

comes at a price. 

 In 1960, Jennings et al. first suggested that reperfusion might hasten the necrotic 

process of cardiomyocytes irreversibly injured during ischaemia.12 More contentious 

was the notion that reperfusion could induce the death of cardiomyocytes7 which had 

only been reversibly injured during ischemia. However, the experimental and clinical 

evidence for myocardial reperfusion injury has been convincingly provided by the 

observation that a therapeutic intervention applied solely at the onset of reperfusion can 

reduce MI size9, 11. 

 Myocardial reperfusion injury can manifest in four different forms. Reperfusion-

induced arrhythmias can be induced in patients with STEMI on acutely reperfusing 

ischaemic myocardium through thrombolysis or PPCI and comprise idioventricular 
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rhythm and ventricular arrhythmias. The majority of these arrhythmias are self-

terminating or are easily managed. Myocardial stunning is a reversible contractile 

dysfunction that also occurs on acutely reperfusing ischaemic myocardium, and is 

believed to result from oxidative stress and intracellular calcium overload in the 

cardiomyocyte. Myocardial stunning is usually self-terminating, with myocardial function 

recovering within days or weeks. Microvascular obstruction (MVO), the third form of 

myocardial reperfusion injury, was originally defined by Krug et al. in 1966 as the 

“inability to reperfuse a previously ischaemic region”13, and its histological  features 

were characterized by Kloner et al. in 1974 in the canine heart14. The aetiology of MVO 

is multifactorial and has been attributed to a number of events, including capillary 

damage with impaired vasodilatation, external capillary compression by endothelial cells, 

cardiomyocyte swelling, microembolization of friable material released from the 

atherosclerotic plaque, platelet microthrombi, and neutrophil plugging15, 16. Among 

patients with STEMI, MVO has been reported to occur in up to 60% of patients with 

post-PPCI normal coronary flow (TIMI 3) within the infarct-related artery16, 17. The 

presence of MVO is associated with adverse LV remodelling, and poor clinical 

outcomes post-PPCI. Lethal myocardial reperfusion injury is the main cause of 

reperfusion-induced death of cardiomyocytes that have been reversibly injured, and can 

contribute to up to 50% of the final MI size. Cytosolic and mitochondrial calcium 

overload, oxidative stress, and rapid restoration of intracellular pH, which result in the 

opening of the mitochondrial permeability transition pore (MPTP) and irreversible 

cardiomyocyte hypercontracture18, have been shown to trigger lethal myocardial 

reperfusion injury. However, a number of other factors contribute, including osmotic 
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overload, gap-junction changes, and inflammatory signalling. Crucially, no effective 

therapy exists for reducing lethal myocardial reperfusion injury in patients with STEMI 

who have undergone revascularization procedures or after cardiac surgery  

 

[H1] Ischaemic preconditioning 

While investigating the cumulative effects of short periods of ischaemia on myocardial 

adenine nucleotides, lactate, and MI size, Murry, Reimer, and Jennings made the 

intriguing discovery that 4–5 min cycles of alternating occlusion and reflow of the left 

anterior descending (LAD) coronary artery, applied immediately before 90 min of 

occlusion and 3 days of reperfusion, resulted in a 75% reduction in MI size in the canine 

heart.19, 20 This seminal observation, termed ischaemic preconditioning (IPC), has been 

replicated in all species tested, including humans, and can be readily applied to other 

organs and tissues21-23. After reperfusion, IPC remains the most powerful intervention 

for reducing MI size in ischaemic hearts. Over the past 3 decades, almost 9,000 papers 

have been published on this topic. 

 

[H2] Mechanisms of action  

The IPC stimulus has been shown to induce two distinct windows of cardioprotection. 

The first window occurs immediately after the IPC stimulus and lasts 2–3 h (termed 

‘classical IPC’ or ‘acute IPC’), after which the effect wanes and disappears. The second 

window follows 12–24 h later, and lasts 48–72 h (termed ‘delayed IPC’ or ‘second 

window of protection’ [SWOP])24, 25. Despite intensive investigation, the actual 

mechanisms that mediate this cardioprotective effect remain incompletely understood, 
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although a large number of signalling pathways underlying IPC have been identified. 

Only a very simplified overview can be provided in this Review (more-comprehensive 

reviews of the subject have been published previously21, 22, 26). 

 In brief, the IPC stimulus, made up of cycles of brief ischaemia and reperfusion, 

initiates production of a number of autacoids (such as acetylcholine, adenosine, 

bradykinin, endothelin, and opioids) by cardiomyocytes. These autacoids bind to their 

respective receptors on the plasma membrane of cardiomyocytes to stimulate a number 

of signalling pathways that convey a cardioprotective signal to the mitochondria. In the 

mitochondria, signalling reactive oxygen species (ROS) are generated and activate 

protein kinases such as Akt, Erk1/2, protein kinase C, and tyrosine kinase, which 

provide the ‘memory’. This process allows the cardioprotective effect to last up to 2–3 h 

(in classical IPC). In delayed IPC, these protein kinases activate transcription factors 

(such as AP-1, hypoxic-inducible factor 1α, nuclear factor κB, nuclear factor erythroid 2-

related factor 2 [also known as Nrf2], and signal transducer and activator of transcription 

[STAT] 1/3), which facilitate the synthesis of ‘distal mediators’ (such as 

prostaglandin G/H synthase  [also known as COX-2], heat shock proteins (such as 

HSP72), and inducible nitric oxide synthase), which in turn induce the cardioprotective 

effect 12–24 h after the IPC stimulus27. In the prevention of myocardial reperfusion 

injury, IPC has been shown to recruit prosurvival signalling pathways at the onset of 

reperfusion, including the Reperfusion Injury Salvage Kinase (RISK) pathway 

(comprising Akt and Erk1/2)28 and the Survivor Activator Factor Enhancement (SAFE) 

pathway (comprising TNF and JAK–STAT3)29. The final processes of cardioprotection in 

classical and delayed IPC remain unclear, although some investigators have 
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hypothesized that preservation of mitochondrial function with less calcium overload, 

attenuated ROS production, and MPTP inhibition might contribute to the protective 

effect21, 22, 30 (FIG. 2). Functional genomics of myocardial tissue has the potential to 

provide further insights into the mechanisms underlying IPC and other endogenous 

cardioprotective strategies31. 

 

[H2] Clinical application 

The phenomenon of IPC can be observed in a number of clinical scenarios in which the 

heart protects itself with brief episodes of ischaemia. ‘Warm-up angina’ refers to the 

phenomenon of increased exercise tolerance following an episode of angina after a 

period of rest32. ‘Pre-infarct angina’ is defined as the cardioprotective effect of 

antecedent angina before an acute MI resulting in smaller infarct size and improved 

clinical outcomes33.  

 The first clinical study conducted to test external application of an IPC stimulus in 

patients undergoing CABG surgery was undertaken in 1993 by our group34. We found 

that intermittent clamping and declamping of the aorta preserved myocardial ATP levels 

in a manner similar to that seen by Murry and colleagues, as described in their seminal 

paper on preconditioning19. Since 1993, a number of studies have confirmed the 

cardioprotective effect of IPC by reducing the extent of PMI (as measured by serum 

cardiac enzymes) in patients undergoing CABG surgery. A meta-analysis of 22 trials, 

which included data for a total of 933 patients, found that application of IPC reduced 

ventricular arrhythmias, decreased inotrope requirements, and shortened the length of 

stay in an intensive care unit compared with control35 . Despite these potential beneficial 
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effects, the need to intervene on the heart directly and the inherent risk of 

thromboembolization arising from clamping an atherosclerotic aorta have prevented IPC 

from being adopted in this clinical setting. 

 

[H1] Ischaemic postconditioning 

The major disadvantage of IPC as a cardioprotective strategy is the requirement to 

intervene before occurrence of the ischaemic event, which is not possible in the case of 

an acute MI. In 2003, Zhao et al. made the exciting discovery that the heart could be 

protected against acute MI by interrupting myocardial reperfusion with several short-

lived episodes of myocardial ischaemia, a phenomenon termed ‘ischaemic 

postconditioning’ (IPost)22,36,37. The investigators found that applying three cycles of 

30-s LAD occlusion and reflow within 1 min of myocardial reperfusion could reduce MI 

size by 44% in canine hearts36. In addition to its MI-limiting effects, IPost was found to 

confer a myriad of protective effects, including reduced levels of myocardial oedema, 

oxidative stress, and polymorphonuclear neutrophil accumulation, as well as preserved 

endothelial function. These findings were consistent with the reduced myocardial 

reperfusion injury seen in postconditioned hearts36. 

 Interestingly, the concept of modifying reperfusion as a strategy to limit MI size 

had already been introduced in the 1980s as ‘gentle’38 or ‘gradual’39 reperfusion40. 

Furthermore, the term ‘postconditioning’ was coined several years earlier in 1996 by Na 

et al. to describe the phenomenon by which intermittent reperfusion — induced by 

ventricular premature beats — prevented reperfusion-induced ventricular fibrillation in 

ischaemic feline hearts.41 Nevertheless, the concept of IPost has captured the 
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imagination and revitalized efforts to target myocardial reperfusion injury as a 

therapeutic strategy for reducing MI size. IPost has been shown to reduce MI size in 

rodents, rabbits, pigs, and other species, including humans, although the 

cardioprotective effect of IPost does not seem to be as robust as IPC22, 23, 26, 42, 43.  

 

[H2] Mechanisms of action 

IPost seems to share some but not all of the signalling mechanisms recruited at the time 

of reperfusion by IPC(FIG. 2). Common signaling elements include activation of cell-

surface receptors on the cardiomyocyte (such as adenosine, bradykinin, and opioids) 

and recruitment of prosurvival signalling pathways (such as RISK, SAFE, and cGMP), 

which mediate cardioprotection by preserving mitochondrial function (through reduced 

calcium overload, attenuated oxidative stress, and inhibited MPTP opening). Intermittent 

reperfusion induced by IPost has also been shown to delay restoration of intracellular 

pH, an effect that might contribute to the MPTP inhibition observed in postconditioned 

hearts44,45. Interestingly, the signalling pathways underlying IPost have been 

demonstrated to be species-specific, for example the RISK pathway mediates IPost in 

the hearts of rats, but not those of pigs46. The reasons for this difference are not clear. 

Notably, the importance of the RISK pathway for IPost has been demonstrated by using 

human atrial muscle harvested from patients undergoing CABG surgery47.  

 

[H2] IPost in STEMI 

The ability to apply the therapeutic intervention at the onset of reperfusion in patients 

with STEMI has greatly facilitated the translation of IPost into the clinical setting. Only 
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2 years after the initial discovery of IPost, the first proof-of-concept clinical study was 

published48. In this study, IPost was performed after direct stenting within 1 min of 

reflow. Four episodes of 1 min inflation and 1 min deflation of an angioplasty balloon 

positioned upstream of the stent were performed. Investigators showed that this 

procedure reduced enzymatic MI size (assessed via total creatine kinase) by 36% and 

improved myocardial perfusion (assessed by myocardial blush grade) when compared 

to control48. In addition to providing the first evidence of successful translation of IPost 

into the clinical setting, findings from this study confirmed the existence of myocardial 

reperfusion injury in humans49, because it clearly demonstrated that intervening at the 

onset of reperfusion reduces MI size. 

 Since publication of this first clinical study, investigators in a number of studies 

have used serum troponin release50, myocardial single-photon emission computed 

tomography51, 52, and cardiac MRI53 to confirm the effects of IPost on limiting the size of 

an MI, and have demonstrated apparent long-term benefits on cardiac function52. 

However, other studies have failed to show a beneficial effect of IPost54, and some 

researchers even report possible detrimental effects55, 56 (TABLE 1). Although meta-

analyses have confirmed the MI-limiting effects of IPost in patients with STEMI57-59, the 

largest clinical study (which included 700 patients) showed no beneficial effect of IPost 

on ST-segment resolution, peak CK-MB levels, myocardial blush grade, or MACE at 

30 days60.  

 The reasons for the mixed results observed using IPost are not clear, but might 

be related to selection of patients and the IPost protocol itself (TABLE 1). In many of the 

studies showing positive results, patient selection criteria were meticulous (fully 
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occluded artery supplying a large area-at-risk in the absence of significant collaterals), 

although not all studies in which these selection criteria were applied showed positive 

effects. A study published in 2014 demonstrated that IPost was ineffective at reducing 

the size of MI in patients presenting with TIMI 2-3 flow, possibly because reperfusion 

had already spontaneously occurred. Patients most likely to benefit from IPost are those 

presenting with an occluded artery61. 

 Another potential issue could be the presence of confounders, such as 

concomitant medications (morphine, nitrates, or P2Y12 platelet inhibitors62, 63, 64, 65) and 

comorbidities (such as age, diabetes, hypertension, and hypercholesterolaemia), in 

patients with STEMI who received postconditioning. Interestingly, a retrospective 

analysis of 173 patients found that traditional cardiovascular risk factors in patients with 

STEMI — such as sex, diabetes, hypertension, dyslipidaemia, and obesity — did not 

affect cardioprotective efficacy of IPost66. However, these findings need to be confirmed 

in a larger, adequately powered, prospective study. In many of the studies showing 

positive effects, the IPost protocol was applied after direct stenting, upstream of the 

responsible lesion, thereby possibly avoiding coronary microembolization. By contrast, 

in many of the studies showing neutral or negative effects, the IPost protocol was 

performed after predilatation and at the site of the lesion. However, this alternative 

approach to the intervention was not used in all the IPost studies that showed neutral 

effects (TABLE 1). A further limitation to the interpretation of the findings regarding the 

use of IPost is that, given the nature of the protocol, it is not possible to blind the 

operator to the intervention. 
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 Whether IPost can improve clinical outcomes is not known and is being 

investigated in the ongoing DANAMI-3 trial, the results of which will be available in early 

201667. Given the invasive nature of the IPost protocol and the mixed results of clinical 

studies so far, the translation of IPost for the benefit of patients with STEMI might prove 

to be difficult. 

 

[H2] IPost in cardiac surgery 

IPost has also been investigated in patients undergoing cardiac surgery, as a 

therapeutic strategy for protecting against perioperative myocardial injury caused by the 

acute global IRI that occurs when a patient is put onto and taken off cardio-pulmonary 

bypass. However, the protocol requires repeated cycles of clamping and unclamping 

the aorta. This procedure is performed three times for 30 s after a patient has been 

taken off bypass68, 69. Given the invasive nature of this IPost protocol and the potential 

risk of thromboembolic complications from manipulating an atherosclerotic aorta, the 

translation of IPost for adult patients undergoing cardiac surgery might not be possible. 

Notably, IPost could have greater therapeutic potential in children undergoing corrective 

cardiac surgery for congenital heart disease, where the risk of thromboembolism is 

substantially lower. 

 

[H1] Pharmacological cardioprotection 

The search for a pharmacological strategy to protect the heart against acute IRI 

preceded the discovery of IPC by many years. The elucidation of signalling pathways 

underlying ischaemic conditioning have resulted in advances in the understanding of 
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pathophysiological mechanisms of acute IRI and have identified a number of molecular 

targets amenable to pharmacological manipulation56, 60. 

The history of pharmacological cardioprotection has been disappointing. Anti-

inflammatory agents, antioxidants, atorvastatin, calcium-channel blockers, 

erythropoietin, and magnesium have all been ineffective in reducing the size of MIs and 

improving clinical outcomes70. A number of pharmacological cardioprotective strategies, 

such as adenosine71 and glucose–insulin–potassium therapy72, showed mixed results, 

with cardioprotective efficacy depending on study design. More targeted 

pharmacological approaches have also failed to limit the size of MIs or improve clinical 

outcomes in clinical studies in which the cardioprotective effects of therapeutic 

hypothermia73, agents targeting mitochondria (bendavia74, cyclosporine A1, 

TRO4030375), and modulation of nitric oxide signalling (using nitrite or inhaled nitric 

oxide)76, 77 were investigated. Although cyclosporine A was shown to reduce the size of 

MIs in a proof-of-concept clinical study, it did not improve clinical outcomes in a 

subsequent large, multicentre clinical trial, the CIRCUS trial (reference 1), indicating the 

challenge of translating cardioprotection into clinical benefit. The reason for the failure of 

cyclosporine A to reduce MI size and improve clinical outcomes in patients with STEMI 

is not completely understood. Preclinical data are inconclusive, with some experimental 

studies failing to show a cardioprotective effect of cyclosporine A administered at 

reperfusion. Clinical data are limited, with only one study showing positive effects of 

cyclosporine A in patients with STEMI. Additional factors to consider are the use of the 

Ciclomulsion formulation of cyclosporine A, and the potential failure of cyclosporine A to 

reach its molecular target in time11.  
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On a more optimistic note, a number of pharmacological strategies — such as the 

use of atrial natriuretic peptide, exenatide, or metoprolol — have been shown to reduce 

the size of an MI. Large, multicentre clinical studies are required to confirm these 

findings and to assess their effect on patient benefit (TABLE 2). 

 

[H1] Remote ischaemic conditioning  

A major disadvantage of IPC and IPost is that they both require an intervention to be 

applied directly to the heart, which is not always. Therefore, a strategy in which the 

cardioprotective stimulus is applied to an organ or tissue remote from the heart is a far 

more attractive clinical application.  

 In 1993, Przyklenk et al. made the crucial discovery that applying the IPC 

stimulus in one coronary vascular territory conferred tolerance to acute IRI in a different 

territory, suggesting that cardioprotection elicited by IPC could be transferred from one 

region of the heart to another78. This form of intramyocardial protection was later 

extended beyond the heart. Investigators reported that MI size could be reduced by 

inducing brief ischaemia and reperfusion to either the kidney79 or small intestine80 

immediately before the sustained coronary artery occlusion. This phenomenon has 

been termed remote ischaemic conditioning (RIC)81-85. The concept of RIC has been 

further extended to encompass different organs and tissues, thereby providing a 

therapeutic strategy for inter-organ protection against the detrimental effects of acute 

IRI. 

 

[H2] Mechanisms of action  
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The mechanism through which an episode of brief ischaemia and reperfusion in an 

organ or tissue located remotely from the heart exerts protection against a subsequently 

sustained insult of acute myocardial IRI is currently unclear. Experimental studies 

suggest that many of the underlying mechanistic pathways and signal transduction 

cascades activated within the protected organ might be similar to those recruited in the 

setting of IPC and IPost81. However, the mechanistic pathway that conveys the 

cardioprotective signal from the remote preconditioned organ or tissue to the heart 

remains uncertain. 

 Evidence indicates that a neurohumoral pathway is central to the protective effect 

underlying RIC. Reperfusion of the remote organ was found to be required for RIC 

cardioprotection, suggesting the ‘washout’ of a substance or humoral factor generated 

by the preconditioning ischaemia, which was then transported to the heart79, 86. In 

another study, blood harvested from a rabbit previously subjected to IPC of both the 

heart and kidney, reduced the size of MI when transfused into a IPC-naive rabbit87, 

suggesting transfer of one or more humoral cardioprotective factors. Hexamethonium (a 

ganglion blocker)86, resection of the neural innervation of the limb88 89, genetic inhibition 

of preganglionic vagal neurons in the brainstem90, and resection of the vagal nerve 

supply to the heart91 have all been shown to abrogate the MI-limiting effects of limb RIC. 

These findings suggest that there is a requirement for an intact neural pathway to 

convey RIC cardioprotection, although the exact details of the neural pathway have not 

been completely elucidated. Stimulation of the neural pathway in the RIC-treated organ 

or tissue seems to be caused by local production of autacoids, such as adenosine92, 93 

and bradykinin94. Proteomic analysis of plasma harvested from RIC-treated animals has 
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not identified the cardioprotective factor, although evidence suggests that it is 

thermolabile, hydrophobic, and 3.0–8.5 kDa in size95-99. Other studies have provided 

experimental evidence implicating calcitonin-gene related peptide100, stromal cell-

derived factor 1101, nitrite102, and microRNA-144103 as possible mediators of RIC 

cardioprotection, although conclusive evidence is lacking. A transferrable 

cardioprotective factor has been isolated from plasma harvested from animals and 

patients after a standard limb RIC protocol93, 98, 104. Generation of this factor has been 

shown to be dependent on an intact neural pathway to the RIC-treated limb93. Neural 

stimulation of the limb was achieved using direct nerve stimulation105, 

electroacupuncture106, topical capsaicin105, or transcutaneous electrode stimulation107 

which generated a blood-borne transferrable cardioprotective factor and reduced size of 

MI in animal models. Finally, Jensen et al. confirmed the need for an intact neural 

pathway to the limb by showing that no blood-borne transferrable cardioprotective factor 

was produced when applying limb RIC to diabetic patients with a sensory neuropathy of 

the limb108. Further studies are required to tease out the exact interaction between the 

neuronal and humoral pathways underlying RIC, and to identify the blood-borne 

cardioprotective factor(s) which mediate RIC cardioprotection. 

 

[H2] Clinical application 

The discovery that cardioprotection could be elicited through applying the RIC stimulus 

to a limb109, 110, by simply inflating and deflating a blood-pressure cuff placed on the 

upper arm or thigh111, has facilitated the translation of RIC into the clinical setting. The 

limb RIC stimulus itself has not been fully characterized. Experimental animal models 
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most often use 5–15 min; however, the most effective limb RIC stimulus for 

experimental or clinical settings remains unclear. The ability to deliver the stimulus 

noninvasively to the limb has allowed RIC to be delivered at different time-points with 

respect to the ischaemia–reperfusion insult. RIC can be delivered 24 h (delayed remote 

ischaemic preconditioning or RIPC), or immediately before the index ischaemia (RIPC), 

after the onset of index ischaemia, but before reperfusion (remote ischaemic 

perconditioning or RIPerC)112, at the onset of reperfusion (remote ischaemic 

postconditioning or RIPost)113, 114, or even 15–30 min into reperfusion (delayed 

RIPost)115. This flexibility in timing of the RIC stimulus has enabled its application in a 

wide variety of clinical settings of acute IRI (FIG. 1). 

 

[H3] RIC in cardiac surgery 

In 2000, Guanydin et al. published the first study of the effect of limb RIC in patients 

undergoing cardiac surgery, although in this small study of eight patients, perioperative 

myocardial injury (PMI) was not assessed116. In 2006, Cheung et al. published the first 

study to demonstrate a cardioprotective effect of limb RIC117. The study involved 

children undergoing cardiac surgery for congenital heart disease. Four 5-min cycles of 

lower limb ischaemia and reperfusion, induced by inflating and deflating a blood-

pressure cuff placed on the thigh, reduced PMI (as indicated by serum troponin I level) 

and requirement for inotropes, and decreased airway pressure. Similar beneficial effects 

were reported in adults undergoing CABG surgery, with a 43% reduction in PMI 

(assessed via the 72 h area under the curve for troponin T level)118. However, although 

a number of studies have confirmed the beneficial effects of RIC in patients undergoing 
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cardiac surgery in terms of attenuating PMI, a substantial number of studies have 

provided neutral findings (TABLE 3). Meta-analyses seemed to confirm the 

cardioprotective effect of limb RIC in terms of reducing PMI119-122, whereas several large, 

prospective, multicentre, randomized clinical trials (adequately powered to detect major 

adverse cardiovascular events) published in the past 2 years showed that limb RIC has 

no beneficial effects on major clinical outcomes in patients undergoing cardiac 

surgery123-126 (TABLE 3).  

 The reasons why limb RIC is not beneficial in patients undergoing cardiac 

surgery are multiple and complex (TABLE 3). Experimental data have established that 

RIC is most effective at protecting the heart against acute IRI. Therefore, cardiac 

surgery might not be the optimal setting for investigating cardioprotective therapies 

(because the causes of PMI are multiple). Furthermore, given that myocardial protection 

strategies are already being used during surgery, the magnitude of PMI is relatively 

small (when compared to STEMI), making it difficult to demonstrate an additional 

cardioprotective effect. Furthermore, the optimal surgical setting for testing RIC is not 

known. Whether studies should have been restricted to CABG surgery alone (where 

acute IRI possibly has the major role in PMI) — and valve or aortic surgery (where the 

causes of PMI also include direct injury to the myocardium) should have been excluded 

— is not clear.  

 The most effective RIC protocol is yet to be defined. The protocol most often 

used in studies (four 5-min cycles of limb ischaemia–reperfusion) has been poorly 

characterized in both animal and clinical studies. Furthermore, whether RIC is more 

effective if delivered before or after surgical incision is not clear. The blinding of the 
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investigators to the RIC protocol might have been suboptimal in many of the clinical 

studies reporting positive results127. Most studies achieved only incomplete blinding 

using a deflated cuff, instead of full blinding using a ‘dummy arm’128. 

 Comorbidities in patients undergoing cardiac surgery (such as age, diabetes, 

obesity, hypertension, hypercholesterolaemia) have been shown in animal studies to 

affect endogenous cardioprotective strategies such as IPC and IPost; their effect on RIC, 

however, has not been well defined63. Another consideration is that patients undergoing 

cardiac surgery receive a variety of drugs that can potentially affect the cardioprotective 

efficacy of RIC. These drugs include anaesthetics (volatile anaesthetic agents 

[isoflurane, sevoflurane] and propofol), analgesics (morphine), and others such as 

nitrates. Data from some studies suggest that RIC might be ineffective in the presence 

of isoflurane129 or propofol130; however, no clear association exists between the use of 

isoflurane or propofol and study outcome. The majority of smaller studies 

documenting a cardioprotective effect showed that RIC reduces the extent of PMI 

defined as reduction in either peak or area-under-the-curve levels of serum cardiac 

enzymes. However, the magnitude of this cardioprotective effect was smaller in larger 

studies131, 132 and absent in the multicentre clinical outcomes trials124-126. Few studies 

have shown a significant reduction in the incidence of CABG-related MI, as defined in 

recent clinical guidelines (termed Type 5 MI)133, an end point that is a critical 

determinant of clinical outcomes after surgery6. 

 A single reason for RIC not being of benefit in the setting of cardiac surgery 

might not become apparent. All the above factors probably contributed, highlighting the 
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difficulties of translating a promising cardioprotective therapy into the clinical setting for 

patient benefit. 

 

[H3] RIC in planned PCI 

RIC has been investigated as a cardioprotective strategy in patients undergoing 

planned PCI. PMI occurs in ~30% of stable patients undergoing planned PCI and in up 

to 80% of unstable patients undergoing urgent PCI. PMI can be quantified by measuring 

the release of serum cardiac enzymes during PCI134. However, the aetiology of PCI-

related myocardial injury is not due to acute IRI per se, but is mainly caused by acute 

ischaemic injury (arising from distal branch occlusions, and coronary embolization). 

Such complications can occur particularly after multivessel and complex PCI134. The 

first investigation of limb RIC in this clinical setting was published by Iliodromitis et al. in 

2006; they showed in a study including 41 patients that RIC using bilateral upper arm 

cuff inflations and deflations exacerbated myocardial injury135. In a subsequent study 

published in 2010, which was larger in size, Hoole et al. found that this intervention 

reduced the magnitude of PCI-related myocardial injury136. After these early studies, a 

number of confirmatory studies have been published, although other studies have 

provided neutral results (TABLE 4). 

 The reasons for these discrepancies are not clear, but several factors possibly 

contribute. RIC has been shown to protect mainly against acute IRI, which is not a 

major component of PCI-related myocardial injury. Moreover, compared with stable 

patients, unstable patients might not benefit from RIC, because they could have been 

preconditioned by anginal chest pain. Comorbidities and concomitant medication might 
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also affect RIC cardioprotection. Finally, whether simple versus multivessel or complex 

PCI is more amenable to RIC is not clear. The presence of predilatation or postdilatation 

during PCI may have attenuated any cardioprotetctive effect elicited by RIC. 

 Meta-analyses have indicated that limb RIC reduces the magnitude of PCI-

related myocardial injury and decreases the incidence of PCI-related MI in stable 

patients undergoing PCI119, 137. Further multicentre studies are required to confirm these 

findings and determine whether this therapeutic approach can actually reduce major 

adverse cardiac events in patients undergoing planned PCI. 

 Compared with CABG surgery and PCI, the clinical setting of STEMI provides the 

‘purest’ example of acute myocardial IRI and best reflects the pre-clinical animal models 

of acute myocardial IRI. Therefore, the potentially cardioprotective therapy of RIC may 

be best suited to patients with STEMI undergoing PPCI, especially as it can be applied 

in this setting to target myocardial reperfusion injury specifically. Several proof-of-

concept studies have reported cardioprotective effects of limb RIC in patients with 

STEMI treated with PPCI (TABLE 5). RIC seemed to be effective when given in the 

ambulance by paramedics138, on arrival at the hospital before PPCI139, 140, and even at 

the onset of reperfusion at the time of PPCI141. Whether limb RIC can improve clinical 

outcomes in patients undergoing PPCI is currently being investigated in the 

CONDI2/ERIC-PPCI trial (NCT01857414). The primary outcomes of this study is to 

determine whether RIC can reduce rates of cardiac death and hospitalization for heart 

failure at 12 months. 

 A more effective approach for targeting myocardial reperfusion injury might be to 

combine therapeutic interventions. This strategy has been shown to have an additive 
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effect on reduction in size of MI in experimental studies142. Initial clinical studies have 

found that this approach might have potential as a therapy. The combination of RIC with 

IPost has been shown to be more effective than IPost alone143 (TABLES 1 and 5). 

 

[H3] Other clinical settings 

The heart is subjected to acute global IRI in cardiac transplantation and in cardiac arrest 

providing further opportunities to investigate the cardioprotective effect of limb RIC. This 

approach has been shown to be promising in experimental studies144. In particular, 

because there is a risk of multiorgan dysfunction arising from acute IRI in these patients, 

limb RIC might have the additional benefit of protecting noncardiac organs and tissues. 

 

 To date, RIC has been investigated as a one-off application; however, cumulative 

benefits might be accrued with repeated RIC stimuli. One experimental study 

demonstrated that repeating limb RIC daily for 28 days prevented adverse LV 

remodelling after an MI in rat hearts145. Whether repeated episodes of limb RIC, applied 

as a daily therapy, are beneficial in the clinical setting is not known. Interestingly, given 

that exercise has also been reported to induce cardioprotection, a parallel might exist 

between exercise and daily RIC as a cardioprotective strategy146. Two clinical studies 

are currently underway to investigate the effect of daily RIC for 4 weeks on LV 

remodelling after an MI: the DREAM (NCT01664611) CRIC-RCT (NCT01817114) trials. 

The CONDI-HF study (NCT02248441) is ongoing to assess the effect of daily RIC on 

LV ejection fraction in patients with chronic heart failure.  
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[H1] Challenges facing clinical research 

Although the concept of IPC was first described in 1986, the therapeutic potential of 

ischaemic conditioning has been realized in only the past 5–10 years, and whether the 

intervention can improve clinical outcomes still remains to be determined. A vast 

number of novel cardioprotective therapies with efficacy proven in experimental animal 

studies have failed to improve clinical outcomes in patients. The reasons for the failure 

to translate the cardioprotective effects of ischaemic conditioning strategies from the 

bench to bedside have been extensively discussed in the literature147-151. Briefly, this 

failure can be attributed to several factors. The available animal models of acute IRI are 

inadequate in representing the wide spectrum of comorbidities and coexisting conditions 

of patients with IHD (such as advanced age, diabetes, hypertension, hyperlipidaemia, 

other medical therapy, and pre-existing coronary artery disease)63. Moreover, some 

clinical studies were poorly designed, and investigators failed to take into account the 

results from experimental studies70, 152. Many novel cardioprotective therapies have 

been investigated in the clinical setting without thorough testing in preclinical animal 

models. Therefore, after two National Heart, Lung, and Blood Institute workshops to 

discuss this issue, the Consortium for preclinicAl assESsment of cARdioprotective 

therapies (CAESAR) was formed. The objective of this consortium was to enable testing 

of novel cardioprotective therapies using small-animal and large-animal models of MI 

within a network of centres, an approach similar to a multicentre, randomized, controlled 

clinical trial153, 154. In addition, guidelines for the future design of both basic science and 

clinical studies for the assessment of novel cardioprotective therapies have been 

proposed70, 151, 152. 
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 The major challenge facing clinical cardioprotection research is that clinical 

outcomes of patients with STEMI after PPCI continue to improve, making it increasingly 

difficult to demonstrate a reduction in size of MI and improvement in clinical outcomes 

with a novel cardioprotective therapy. However, although mortality after STEMI is 

declining, the number of patients surviving a STEMI and subsequently developing heart 

failure is increasing. Therefore, novel therapeutic strategies that can prevent myocardial 

reperfusion injury and reduce the size of MI, to preserve LV systolic function and 

prevent onset of heart failure, are still needed. A similar challenge faces clinical 

research on cardioprotection in patients undergoing CABG surgery. Improvements in 

surgical techniques and advances in myocardial protection have reduced the extent of 

PMI together with patient mortality. Currently, the death rate at 1 year after isolated 

CABG surgery is as low as 1–2%. However, with an ageing population and increasing 

prevalence of comorbidities, such as diabetes, obesity, and hypertension, novel 

cardioprotective therapies for high-risk patients will be required. Therefore, patients at 

high-risk of operative complications should perhaps be the focus of future clinical 

cardioprotection studies.  

 

[H1] Conclusions 

Ischaemic conditioning offers a powerful endogenous cardioprotective strategy for 

reducing size of MI in patients with STEMI undergoing reperfusion, and attenuating 

perioperative and periprocedural myocardial injury in patients undergoing CABG 

surgery or PCI, respectively. The different forms of ischaemic conditioning enable its 

application in a number of clinical settings (FIG. 1). In particular, the simplicity and 
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noninvasive nature, as well as the flexibility of the timing of the RIC stimulus, make it 

feasible to apply in many clinical scenarios involving acute IRI. Clearly, ischaemic 

conditioning is highly cardioprotective, as shown by the wealth of preclinical data from 

animal experiments. However, most importantly, clinical studies have produced mixed 

results. The most promising data exist for limb RIC in patients with STEMI Results from 

clinical studies of pharmacological cardioprotection strategies have been generally 

disappointing to date. Promising agents include exenatide and metoprolol, although 

large, multicentre studies are required to confirm their cardioprotective potential and to 

determine whether they can improve clinical outcomes. Although clinical 

cardioprotection research has been challenging, novel therapies are still needed 

because of the increasing prevalence of heart failure in patients with IHD. Further work 

is required to optimize the design of our experimental animal and clinical studies, and 

improve how we select which novel cardioprotective therapy to test in a clinical setting. 

Such advances could facilitate the discovery of new effective therapies for reducing MI 

size and improving clinical outcomes in patients with IHD. 
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Key points 

Currently, no treatment has been proven to be effective for preventing ‘myocardial 

reperfusion injury’ — the death of cardiomyocytes that paradoxically occurs when 

reperfusing ischaemic myocardium 
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One or more brief cycles of ischaemia and reperfusion can protect the heart from acute 

myocardial infarction and myocardial reperfusion injury — a phenomenon termed 

‘ischaemic conditioning’ 

Ischaemic conditioning can be applied either directly to the heart or from afar; that is, to 

a remote organ or tissue (such as an arm or a leg)  

Investigation of signalling pathways underlying ischaemic conditioning has identified 

molecular targets for pharmacological manipulation — a therapeutic strategy termed 

‘pharmacological cardioprotection’ 

Proof-of-concept clinical studies have shown mixed results of ischaemic conditioning in 

cardiac surgery and percutaneous coronary intervention; more consistently positive 

results have been observed in acute myocardial infarction 

The results of large, multicentre, randomized, controlled clinical trials of ischaemic 

conditioning on clinical outcomes after cardiac surgery have highlighted the challenges 

in translating cardioprotection into clinical practice 

 

Figure 1 | Ischaemic conditioning. This scheme depicts the different forms of 

ischaemic conditioning, and their timing with respect to the index myocardial ischaemia 

and reperfusion episode. The clinical settings in which they have been tested (black text) 

or the clinical settings in which there is potential for application (grey text) is described 

below. Delayed preconditioning with one or more brief episodes of ischaemia–

reperfusion can be delivered 48–72 h before the index ischaemic event, whereas 

classical preconditioning has to be delivered within 3 h of the index ischaemic episode. 

Preconditioning can be delivered after the onset of index myocardial ischaemia, but 
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before reperfusion, whereas postconditioning has to be initiated within 1 min of 

reperfusion to be effective. Delayed postconditioning, which can be delivered up to 15–

30 min into reperfusion has not yet been investigated in the clinical setting, and remains 

a preclinical observation. 

 

Figure 2 | Signalling pathways of ischaemic conditioning. This scheme depicts the 

major signalling pathways and cardioprotective effects of the various forms of ischaemic 

conditioning. Remote ischaemic conditioning is performed by applying one or more 

cycles of brief ischaemia and reperfusion (IR) to the upper or lower limb by inflating and 

deflating a blood pressure cuff placed on the upper arm or thigh. Through the 

production of a blood-borne factor(s) and the stimulation of a neural pathway, the 

cardioprotective signal is conveyed to the heart where prosurvival signalling pathways 

within the cardiomyocyte mediate the cardioprotective effect. These signalling pathways 

are similar to those recruited by ischaemic preconditioning and postconditioning and 

targeted by pharmacological cardioprotection strategies. The signalling cascade 

underlying cardioprotection begins at the cardiomyocyte plasma membrane with the 

activation of G-protein-coupled or cytokine receptors by autacoids such as adenosine, 

bradykinin, or opioids (released in response to the ischaemic conditioning stimulus). 

This process results in the recruitment of signalling pathways such as the Reperfusion 

Injury Salvage Kinase (RISK) pathway (PI3K–Akt and MEK1/2–Erk1/2), Survivor 

Activator Factor Enhancement (SAFE) pathway (TNF and JAK–STAT), and the cGMP–

PKG pathway. These salvage pathways have been shown to activate downstream 

mediators such as eNOS, GSK-3β, hexokinase II (HKII), PKC-ε, the mitochondrial ATP-
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dependent potassium channel (KATP), which then mediate an inhibitory effect on 

mitochondrial permeability transition pore (MPTP) opening (adapted from30). 
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Table 1 | Major clinical studies of IPost in patients with STEMI 

Study n Patient selection IPost protocol Main outcome Notes 
Positive studies 
Staat et al. (2005)48 30 LAD/RCA only 

≤6 h ischaemic time 
TIMI 0 pre-PPCI 
TIMI 2–3 post-PPCI 
No collaterals 
No angina in 48 h 

4 x 1 min inflations and 
deflations of 
angioplasty balloon 
upstream of stent 
Direct stenting 

36% reduction in MI 
size (72 h AUC CK) 
Better blush grade 

First clinical study 
to translate IPost 
into clinical setting 

Ma et al. (2006)50 94 All STEMI 
≤12 h ischaemic time 
TIMI 3 post-PPCI 

3 x 0.5 min inflations 
and deflations of 
angioplasty balloon 

27% and 32% 
reductions in MI size 
(peak CK and CK–MB) 
Better TIMI flow, WMSI, 
and endothelial function 
Less MDA 

This study showed 
an alternative IPost 
protocol to be 
effective 

Yang et al. (2007)51 41 All STEMI 
≤12 h ischaemic time 
TIMI 0–1 pre-PPCI 
No collaterals 

3 x 0.5 min inflations 
and deflations of 
angioplasty balloon 

27% reduction in MI 
size (72 h AUC CK) 
27% reduction in MI 
size (SPECT at 1 week) 

First clinical study 
to demonstrate MI 
size reduction on 
SPECT 

Thibault et al. 
(2008)52 

38 LAD/RCA only 
≤6 h ischaemic time 
TIMI 0 pre-PPCI 
TIMI 2–3 post-PPCI 
No collaterals 
No angina in 48 h 

4 x 1 min inflations and 
deflations of 
angioplasty balloon 
upstream of stent 
Direct stenting 

40% and 47% 
reductions in MI size 
(72 h AUC CK and 
troponin I) 
39% reduction in MI 
size (SPECT at 
6 months) 
7% increase in LVEF 
(echo at 1 year) 

First clinical study 
to demonstrate 
long-term benefit 
with IPost  

Lonborg et al. 
(2010)53 

118 All STEMI 
≤12 h ischaemic time 
TIMI 0–1 pre-PPCI 
TIMI 3 post-PPCI 

4 x 0.5 min inflations 
and deflations of 
angioplasty balloon 
within the stent 

31% increase in 
myocardial salvage ratio 
19% relative reduction 
in MI size (MRI at 
3 months)  
41% reduction in 
patients developing 
heart failure  

First clinical study 
to demonstrate MI 
size reduction on 
MRI 
Largest positive 
study to date 

Araszkiewicz et al. 
(2014)155 

72 LAD/RCA/Cx-prox/mid 
≤6 h ischaemic time 
TIMI 0 pre-PPCI 
No collaterals 

4 x 1 min inflations and 
deflations of 
angioplasty balloon 
upstream of stent 

36% reduction in MI 
size (36 h AUC CK) 
26% reduction in MI 
size (36 h AUC CK–MB) 
Better blush grade 
Less MVO 

Most recent 
positive study to 
date 

Neutral or negative studies 
Sorensson et al. 
(2010)54 

76 All STEMI 
≤6 h ischaemic time 
TIMI 0 pre-PPCI 

4 x 1 min inflations and 
deflations of 
angioplasty balloon 
within the stent 

No difference in MI size 
(48 h AUC CK–MB, 
troponin T or MRI at 
day 6–9) 

First neutral study, 
although reduced 
MI size in STEMI 
with large AAR 
(>30% LV) 

Tarantini et al. 
(2012) POST-MI56 

79 All STEMI 
<6 h ischaemic time 
TIMI 0–1 pre-PPCI 
No collaterals 

4 x 1 min inflations and 
deflations of 
angioplasty balloon 
within the stent 
Direct stenting and no 
thrombectomy 
performed 

No difference in MI size 
(MRI 30 days) — 
borderline increase 

First study to 
suggest detrimental 
effects with IPost 

Freixia et al. 
(2012)55 

79 All STEMI 
<12 h ischaemic time 
TIMI 0–1 pre-PPCI 
No collaterals 

4 x 1 min inflations and 
deflations of 
angioplasty balloon 
within the stent 
Direct stenting 

No difference in MI size 
(MRI at 1 week or 
6 months) 
Less myocardial 
salvage with IPost 

Further study to 
suggest detrimental 
effects with IPost 

Dwyer et al. 
(2013)156 

102 All STEMI 
<6 h ischaemic time 
TIMI 0–1 pre-PPCI 
No collaterals 

4 x 0.5 min inflations 
and deflations of 
angioplasty balloon at 
site of lesion 

No difference in 
myocardial salvage or 
MI size (MRI at day 3) 

First neutral study 
using an alternative 
IPost protocol 

Hahn et al. (2014) 
POST60 

700 All STEMI 
<12 h ischaemic time 

4 x 1 min inflations and 
deflations of 

No difference in ST-
segment resolution, 

Largest and first 
multicentre study 
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TIMI 0–1 pre-PPCI angioplasty balloon at 
site of lesion 

myocardial blush grade, 
peak CK–MB levels or 
MACE (death, MI, 
severe heart failure, 
or stent thrombosis) 
No difference in MI size 
or myocardial salvage 
(MRI at day 3) in 
substudy of 111 
patients157 

Eitel et al. (2015) 
LIPSIA 
CONDITIONING143 

333 All STEMI 4 x 1 min inflations and 
deflations of 
angioplasty balloon at 
site of lesion vs control 

No difference in MI size, 
myocardial salvage 
(MRI at day 3), or 
MACE at 6 months  

Improved 
myocardial salvage 
when IPost 
combined with RIC 

Ongoing studies 
DANAMI 367 1,252 All STEMI 

<12 h ischaemic time 
TIMI 0–1 pre-PPCI 

4 x 0.5 min inflations 
and deflations of 
angioplasty balloon at 
site of lesion 

Primary outcome is all-
cause death and heart 
failure at 2 years 

Recruitment 
complete 
Currently in follow-
up- results 
available early 
2016 

AAR, area at risk; AUC, area under curve; CK, creatine kinase; CK–MB, creatine kinase MB isoenzyme; echo, echocardiography; 

IPost, ischaemic postconditioning; LAD, left anterior descending artery; LV, left ventricle; LVEF, left ventricular ejection fraction; 

MACE, major adverse cardiac events; MI, myocardial infarction; PPCI, primary percutaneous coronary intervention; RCA, right 

coronary artery; RIC, remote ischaemic conditioning; SPECT, single-photon emission computed tomography; STEMI, ST-segment 

elevation myocardial infarction; TIMI, thrombosis in myocardial infarction; Cx-prox Proximal circumflex coronary artery; MDA, 

Malondialdehyde; MVO, microvascular obstruction; WMSI, wall motion score index.  
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Table 2 | Promising pharmacological strategies  

Study n Patient selection Treatment protocol Main outcome Notes 
Natriuretic peptide      
Kitakaze et al. 
(2007) J-WIND158 

569 All STEMI Itravenous carperitide 
(atrial natriuretic 
peptide analogue) 
72 h infusion before 
PPCI 

15% reduction in MI 
size (72 h AUC total 
CK) 
2.0% absolute 
increase in LVEF 

Atrial natriuretic 
peptide targets 
prosurvival kinase 
pathways such as 
the cGMP and RISK 
pathways 

Exenatide      
Lonborg et al. 
(2012)159, 160 

107 All STEMI 
TIMI 0/1 

Intravenous infusion of 
exenatide started 
15 min before PPCI 
and continued for 6 h 

23% reduction in MI 
size (3-month MRI) 
Increase in 
myocardial salvage 
index (0.62 to 0.71) 
Short ischaemic times 
(≤132 min) associated 
with greater 
myocardial salvage 

Exenatide, a GLP-1 
analogue, targets 
prosurvival kinase 
pathways such as 
the RISK pathway 

Woo et al. (2013)161 58 All STEMI 
TIMI 0 

Subcutaneous 
injection of exenatide 
before PPCI 

52% reduction in MI 
size (1-month MRI) 
27% reduction in MI 
size (72 h AUC CK–
MB) 
54% reduction in MI 
size (72 h AUC 
troponin I) 

First study to 
demonstrate a 
positive effect with 
subcutaneously 
administered 
exenatide 

EXAMI162 96 All STEMI 
TIMI 0/1 

Intravenous infusion of 
exenatide started 
before PPCI and 
continued for 72 h 

Ongoing study 
Primary end point will 
be MI size at 
4 months as a 
percentage of AAR 

Study completed, 
results awaited 

EMPRES 
(NCT01938235) 

198 All STEMI Intravenous infusion of 
exenatide for 24 h 
(All-comer STEMI, 
TIMI 0/1) 

Ongoing study 
Primary end point will 
be MI size at 
3 months over AAR at 
72 h after 
randomization (using 
MRI) 

Largest clinical study 
to investigate 
exenatide 

Metoprolol      
Ibanez et al. (2013) 
METOCARD-CNIC163, 

164 

270 LAD STEMI only Intravenous 
metoprolol (3 x 5 mg) 
in ambulance before 
PPCI 

22% reduction in MI 
size (7-day MRI) 
3.7% absolute 
increase in LVEF 
(6-month MRI) 
59% reduction in the 
incidence of poor 
LVEF (<35%; 
6-month MRI) 
65% reduction in 
need for ICD by 65% 
at 6 months 
68% reduction in HHF 
at 2 years 

The mechanism of 
cardioprotection is 
not clear 

Roolvink et al. 
EARLY BAMI165 

408 All STEMI 
<12 h after onset of 
symptoms 

Intravenous 
metoprolol (3 x 5 mg) 
in ambulance before 
PPCI 

Ongoing study 
Primary end point of 
MI size at 30 days on 
MRI 

Largest study to 
investigate 
metoprolol 

AAR, area at risk; AUC, area under curve; CK, creatine kinase; CK–MB, creatine kinase myocardial band; GLP-1, glucagon-like 

peptide 1; HHF, hospitalization for heart failure; ICD, implantable cardioverter–defibrillator; LAD, left anterior descending artery; 

LVEF, left ventricular ejection fraction; MI, myocardial infarction; PPCI, primary percutaneous coronary intervention; RISK, 

reperfusion injury salvage kinase; STEMI, ST-segment elevation myocardial infarction. 
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Table 3 | Major clinical studies of RIC in cardiac surgery 

Study Number of 
patients / type 
of surgery 

Anaesthetic 
regimen 

RIC protocol Main outcome Notes 

Positive studies      
Cheung et al. 
(2006)117 

37 children 
Corrective 
cardiac surgery 
Blood 
cardioplegia 

Induction: 
sevoflurane 
Maintenance: 
fentanyl, isoflurane 

4 x 5 min 
inflations/deflations of 
cuff on thigh vs control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

Reduction in PMI 
(24 h troponin I 
AUC) 
Less inotrope 
requirement 
Lower airway 
pressures 

First study in 
children to 
show benefit 
with RIC in 
cardiac surgery 

Hausenloy et al. 
(2007)118 

57 adults CABG 
surgery only 
ICCF or blood 
cardioplegia 

Induction: etomidate, 
fentanyl, midazolam, 
pancuronium, 
propofol 
Maintenance: 
propofol 

3 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

43% reduction in 
PMI (72 h 
troponin T AUC) 

First study in 
adult patients to 
show benefit 
with RIC in 
cardiac surgery 

Thielmann et al. 
(2010)166 

53 adults CABG 
surgery only 
Crystalloid 
cardioplegia 

Induction: etomidate, 
rocuronium, 
sufentanil 
Maintenance: 
isoflurane or 
propofol  

3 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

45% reduction in 
PMI (72 h 
troponin I AUC) 

No diabetic 
patients 

Venugopal et al. 
(2007)167 

57 adults CABG 
surgery with or 
without aortic 
valve surgery 
Blood 
cardioplegia 

Induction: etomidate, 
fentanyl, midazolam, 
pancuronium, 
propofol 
Maintenance: 
propofol 

3 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

42% reduction in 
PMI (72 h 
troponin T AUC) 

First study to 
demonstrate  
beneficial 
effects if RIC in 
presence of 
blood 
cardiopegia 
only 

Wagner et al. 
(2010)168 

81 adults 
CABG surgery 
with or without 
aortic valve 
surgery 
Crystalloid 
cardioplegia 

Induction: diazepam, 
pancuronium, 
pufentanil 
Maintenance: 
diazepam, sufentanil 

3 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

12% reduction in 
PMI (8 h 
troponin I peak) 
Protective effect 
abolished by 
tramadol 

First study to 
show modest 
effect with 
delayed RIC in 
cardiac surgery 

Kottenberg et al. 
(2012)130 

72 adults 
CABG surgery 
only 
Crystalloid 
cardioplegia 

Induction: etomidate, 
sufentanil, 
rocuronium 
Maintenance: 
isoflurane–sufentanil 
or propofol–
sufentanil  

3 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
Four groups control 
propofol (n = 19), 
control isoflurane 
(n = 19), RIC propofol 
(n = 14), and RIC 
isoflurane (n = 19) 
Sham: deflated cuff 

50% reduction in 
PMI (72 h 
troponin I AUC) 
Effect of RIC 
abolished in 
presence of 
propofol 

First study to 
suggest that 
propofol might 
interfere with 
RIC protection 
No diabetic 
patients 

Thielmann et al. 
(2013)131 

198 adults 
CABG surgery 
only 
Crystalloid 
cardioplegia 

Induction: etomidate, 
rocuronium, 
sufentanil 
Maintenance: 
isoflurane, 
sulfentanil  

3 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

17% reduction in 
PMI (72 h 
troponin I AUC) 
73% reduction in 
all-cause mortality 

First study to 
suggest limb 
RIC reducing 
mortality 
(secondary end 
point) 
No diabetic 
patients 

Candilio et al. 
(2015)132 

180 adults 
CABG surgery 
only 
Blood 
cardioplegia 

Induction: etomidate, 
fentanyl, midazolam, 
pancuronium, 
propofol, 
rocuronium, 
vecuronium  

2 x 5 min simultaneous 
inflations/deflations of 
cuffs on upper arm and 
thigh vs control 
After anaesthesia and 
before surgical incision 

26% reduction in 
PMI (72 h high-
sensitivity 
troponin T AUC) 
54% reduction in 
postoperative AF 

First clinical 
study to 
demonstrate 
beneficial 
effects with RIC 
on early 
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Maintenance: 
fentanyl, isoflurane, 
propofol 

Sham: deflated cuffs 1-day reduction in 
ITU stay 

outcomes  

Neutral studies      
Rahman et al. 
(2010)128 

162 adults 
CABG surgery 
only 
Blood 
cardioplegia 

Induction: etomidate, 
fentanyl, 
pancuronium 
Maintenance: 
alfentanil, propofol 
On CPB: enflurane 
or sevoflurane 

3 x 5 min 
inflations/deflations of 
cuff on upper arm 
After anaesthesia and 
following surgical 
incision 
Sham: dummy arm 

No differences in 
PMI (48 h AUC 
troponin T), 
arrhythmias, 
inotrope support, 
dialysis 
requirements, 
intubation times 

First neutral 
study in CABG 
only patients 

Kunst et al. 
(2011)169 

54 adults  
CABG surgery 
with or without 
valve or aortic 
surgery 
Blood 
cardioplegia 

Induction: 
atracurium, 
midazolam, 
remifentanil, propofol 
Maintenance: 
isoflurane 
On CPB: propofol 

3 x 5 min 
inflations/deflations of 
cuff on upper arm  
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

No differences in 
PMI (48 h AUC 
troponin I) or in 
release of 
inflammatory 
markers 

First neutral 
study in CABG 
with or without 
valve surgery 
patients  

Luchinetti et al. 
(2012)170 

56 adults 
CABG surgery 
only 
Blood 
cardioplegia 

Induction: fentanyl, 
propofol, 
remifentanil, 
rocuronium, 
sulfentanil 
Maintenance: 
isoflurane only 

4 x 5 min 
inflations/deflations of 
cuff on thigh vs control 
After anaesthesia and 
before surgical incision 
Sham: none 

No differences in 
PMI (48 h AUC 
high-sensitivity 
troponin T) 

First study to 
suggest that 
RIC ineffective 
in presence of 
isoflurane, 
although 
propofol given 
at induction 

Young et al. 
(2012)171 

96 adults 
High-risk CABG 
surgery with or 
without valve, 
redo surgery 

Induction: fentanyl, 
midazolam, 
rocuronium, 
vecuronium 
Maintenance: 
isoflurane, propofol 

3 x 5 min 
inflations/deflations of 
cuff on arm vs control 
After anaesthesia and 
before surgical incision 
Sham: dummy arm 

No differences in 
PMI (6 and 12 h 
levels of high-
sensitivity 
troponin T) 
Possibility of 
increased PMI 
with RIC 

First neutral 
study in high-
risk cardiac 
surgery 
patients  

Hong et al. 
(2014)124 

1,280 adults 
CABG, valve, 
aortic, or 
congenial heart 
surgery 
Off-pump and 
on-pump 

Induction: etomidate, 
midazolam, 
sufentanil 
Maintenance: 
propofol, remifentanil 

4 x 5 min 
inflations/deflations of 
cuff on arm vs control 
Two RIC stimuli: one 
after anaesthesia 
before CPB or coronary 
anastomoses and a 
second immediately 
after the completion of 
CPB or coronary 
anastomoses 
Sham: none 

No difference in 
primary combined 
end point of 
death, MI, 
arrhythmia, 
stroke, coma, 
renal failure or 
dysfunction, 
respiratory failure, 
cardiogenic 
shock, 
gastrointestinal 
complication, and 
multiorgan failure 

In this study, 
two RIC 
stimuli were 
tested  

Hausenloy et al. 
(2015) ERICCA126 

1,612 adults 
CABG surgery 
with or without 
valve surgery 
Blood 
cardioplegia 

Induction: etomidate, 
fentanyl, midazolam, 
pancuronium, 
propofol, 
rocuronium, 
vecuronium 
Maintenance: 
propofol, isoflurane 

4 x 5 min 
inflations/deflations of 
cuff on upper arm vs 
control 
After anaesthesia and 
before surgical incision 
Sham: deflated cuff 

No difference in 
primary combined 
end point 
(cardiac, death, 
MI, stroke, 
revascularization)  
No differences in 
PMI, AF, AKI, 
ITU/hospital stay, 
inotrope support, 
quality of life 

Largest study 
to show no 
effect with RIC 
on one year 
outcomes 

Meybohm et al. 
(2015) RIPHeart125 

1,403 adults 
CABG surgery 
with or without 
valve surgery or 
aortic surgery 
Blood 
cardioplegia 

Induction: propofol 
Maintenance: 
propofol 

4 x 5 min 
inflations/deflations of 
cuff on upper arm  
After anaesthesia and 
following surgical 
incision 
Sham: dummy arm 

No difference in 
primary combined 
end point 
(cardiac, death, 
MI, stroke, AKI) 
until hospital 
discharge 
No differences in 

Largest study 
to show no 
effect with RIC 
on hospital 
outcomes  
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ventilation time, 
ITU or hospital 
stay, AF, delirium 

AF, atrial fibrillation; AKI, acute kidney injury; AUC, area under curve; CPB, cardiopulmonary bypass; ITU, intensive therapy unit; MI, 

myocardial infarction; PMI, perioperative myocardial injury; RIC, remote ischaemic conditioning; ICCF, intermittent cross-clamp 

fibrillation.  



 

49 

 

Table 4 | Major clinical studies of limb RIC in planned PCI 

Study Number 
and 
condition of 
patients 

RIC protocol Main outcome Comments 

Positive studies     
Iliodromitis et al. 
(2006)172 

41 
Stable 

3 x 5 min 
inflations/deflations of 
cuffs on both upper 
arms immediately 
before PCI 
Sham: deflated cuffs 

Increase in 24 h levels and 48 h 
AUC of CK–MB (threefold to fourfold 
increase) and troponin I (threefold 
increase) 

First study to test effect of 
limb RIC in planned PCI 

Hoole et al. (2009) 
CRISP stent136 

202 
Stable 

3 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
Sham: deflated cuff 

57% reduction in troponin T at 24 h 
Less chest pain and fewer ischaemic 
electrocardiogram changes 

First study to show 
cardioprotective effect with 
limb RIC in planned PCI 

Ahmed et al. 
(2013)173 

149 
Stable 

3 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
Sham: deflated cuff 

57% reduction in troponin T at 16 h 
No difference in post-procedure MI 

Second study to confirm 
benefits with RIC in this 
setting 

Luo et al. (2013)174 205 
Stable 

3 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
Sham: deflated cuff 

48% reduction in high-sensitivity 
troponin I at 16 h 
Reduced incidence of post-
procedure (type 4a) MI (39% vs 
54%) 

First study to show 
positive effect of RIC on 
incidence of type 4a MI 

Davies et al. 
(2013)175 

192 
Stable 

3 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
Sham: deflated cuff 

42% reduction in all-cause mortality, 
nonfatal MI, TIA or stroke, HHF at 
6 years 

First study to test effect of 
limb RIC on long-term 
clinical outcomes after PCI 

Zografos et al. 
(2014)176 

94 
Stable 

1 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
Sham: deflated cuff 

80% reduction in troponin I at 24 h 
56% reduction incidence of PCI-
related MI 

First study to show benefit 
with one cycle of limb RIC 
— beneficial in cases of 
ad hoc PCI 

Liu et al. (2014)177 200 
Stable 

3 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
Sham: deflated cuff 

40–60% reduction in troponin I and 
CK–MB at 24 h 
Less chest pain and ST-segment 
deviation with PCI 

First study to test effect of 
second window of 
protection of limb RIC 

Neutral or negative 
studies 

    

Iliodromitis et al. 
(2006)172 

41 
Stable 

3 x 5 min 
inflations/deflations of 
cuffs on both upper 
arms immediately 
before PCI 
Sham: deflated cuffs 

Increase in 24 h levels and 48 h 
AUC of CK–MB (threefold to fourfold 
increase) and troponin I (threefold 
increase) 

First study to test effect of 
limb RIC in planned PCI 

Prasad et al. 
(2013)178 

95 
Stable 
(75%) and 
unstable 
(25%) 

3 x 3 min 
inflations/deflations of 
cuffs on upper arm 
immediately before 
PCI 
Sham: 3 x 3 min low-
pressure 
inflations/deflations 

No difference in the frequency of 
post-PCI myonecrosis, defined as a 
peak postprocedural cardiac 
troponin T level >0.03 ng/dl 
Increased levels of CK–MB at 24 h 

Potential reasons for 
neutral results include 
older patients, more 
diabetics, suboptimal 
stimulus 

Xu et al. (2014)179 200 
Stable 

3 x 5 min 
inflations/deflations of 

No difference high-sensitivity 
troponin I levels at 16 h or incidence 

First study to show neutral 
effect of RIC on incidence 
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Aged 
≥65 years 
and diabetic 

cuff on upper arm 
immediately before 
PCI 
Sham: none 

of post-PCI (type 4a) MI of type 4a MI  

Lavi et al. (2014)180 360 
Stable 
(72%) and 
unstable 
(28%) 

Three groups: 
3 x 5 min 
inflations/deflations of 
cuffs on upper arm or 
thigh immediately after 
PCI vs sham 
Sham: 3 x 5 min low-
pressure 
inflations/deflations 

No difference in troponin T 
levels >3×URL post-PCI (at 6 h or 
18–24 h) for either arm or leg RIC 

First study to test effect of 
limb remote ischaemic 
postconditioning in 
planned PCI 

Ongoing studies 
EURO-CRIPS181 555 

Stable 
3 x 5 min 
inflations/deflations of 
cuff on upper arm 
immediately before 
PCI 
 

Planned study 
Primary end point will be contrast-
induced acute kidney injury 
Secondary end point will be 
periprocedural myocardial injury 

Largest clinical study to 
date 

AUC, area under curve; CK-MB, creatine kinase MB isoenzyme; HHF, hospitalisation for heart failure; MI, myocardial infarction; PCI, 
percutaneous coronary intervention; RIC, remote ischaemic conditioning; TIA, transient ischaemic attack; URL, upper reference limit.  
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Table 5 | Major clinical studies of RIC in STEMI 

Study Number and 
population of 
patients 

RIC protocol Main outcomes Notes 

Bøtker et al. 
(2010) CONDI138 

142 
All STEMI 

4 x 5 min 
inflations/deflations of cuff 
on upper arm in the 
ambulance before PPCI 
Sham: none 

Increase in myocardial salvage 
index at 30 days 
No difference in MI size (SPECT 
or peak troponin) 

First study to test 
effect of RIC in 
patients with STEMI 
Reduced MI size in 
LAD STEMI 

Rentoukas et al. 
(2010)139  

93  
All STEMI 

3 x 4 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI 
Sham: 3 x 5 min low-
pressure 
inflations/deflations 

Better ST-segment resolution 
and lower peak troponin I 
Additive effects with morphine 

Combined effects of 
RIC with morphine 

Crimi et al. 
(2013)141 

100  
Anterior STEMI only 

3 x 5 min 
inflations/deflation of cuff 
on thigh at onset of 
reperfusion 
Sham: none 

20% reduction in 72 h AUC CK–
MB 21% reduction in myocardial 
oedema by MRI 

First study to show 
effect of RIC given 
at onset of 
reperfusion, and first 
to report effect of 
RIC on enzymatic MI 
size and myocardial 
oedema 

White et al. (2014) 
ERIC-STEMI140 

83 
All STEMI 

4 x 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI 
Sham: deflated cuff 

27% reduction in MI size by MRI 
19% reduction in myocardial 
oedema by MRI 

First study to show 
effect of RIC given 
before PPCI on MI 
size and myocardial 
oedema by MRI 

Hausenloy et al. 
(2015) 
ERIC-LYSIS182 

519 
All STEMI 

4 x 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before 
thrombolysis 
Sham: deflated cuff  

17% reduction in enzymatic MI 
size (CK–MB and troponin T) 

Only study to test 
effect of RIC in 
thrombolysed 
patients with STEMI 

Sloth et al. 
(2014)183 

251 
All STEMI 

4 x 5 min 
inflations/deflations of cuff 
on upper arm in the 
ambulance before PPCI 
Sham: none 

51% reduction in all-cause 
mortality, nonfatal MI, TIA or 
stroke, HHF at 3.8 years 

First study to test 
effect of RIC on 
long-term outcomes 
after PPCI 
(secondary end 
point) 

Eitel et al. (2015) 
LIPSIA 
CONDITIONING14

3 

333 
All STEMI 

4 x 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI plus 
IPost 
Sham: none 

Increased myocardial salvage 
with RIC + IPost vs control (49 
vs 40) 
No difference in MI size, MVO, 
or 6-month clinical end points 
(death, re-infarction, and heart 
failure at 6 months) 

Improved myocardial 
salvage when IPost 
combined with RIC 
Neither IPost alone 
nor RIC + IPost 
reduce myocardial 
oedema 

CONDI-2/ERIC-P
PCI184 

4300 
All STEMI 

4 x 5 min 
inflations/deflations of cuff 
on upper arm before PPCI 
Sham: none or simulated 

Ongoing study 
Primary end point of cardiac 
death and HHF at 12 months 

Collaboration 
between Denmark, 
Serbia, Spain, and 
the UK 
First study to test 
effect of RIC on 
long-term clinical 
outcomes as primary 
end point 

AUC, area under curve; CK-MB, creatine kinase MB isoenzyme; HHF, hospitalization for heart failure; IPost, ischaemic 

postconditioning; LAD, left anterior descending artery; MI, myocardial infarction; PPCI, primary percutaneous coronary intervention; 

RIC, remote ischaemic conditioning; SPECT, single-photon emission computed tomography; STEMI, ST-segment elevation 

myocardial infarction; TIA, transient ischaemic attack; MVO ,microvascular obstruction.  



 

52 

 

Author biographies 

Derek J. Hausenloy is a Professor at the Hatter Cardiovascular Institute, University 

College London, and Professor in the Cardiovascular & Metabolic Disorders Program at 

Duke-National University Singapore. He is an Honorary Consultant Cardiologist at the 

Barts Heart Hospital and Senior Consultant at the National Heart Centre Singapore. He 

has published >147 papers, and his main research interests are cardioprotection and 

cardiac imaging in both the experimental and clinical settings. 

 

Derek M. Yellon is Professor of Molecular & Cellular Cardiology at University College 

London, UK. He is director of the Hatter Cardiovascular Institute and head of the 

Research Department of Cardiovascular Medicine at UCL Hospitals & Medical School. 

He is also Programme Director (Cardiology & Diabetes) for the National Institute for 

Health Research–UCLH Biomedical Research Centre. He has published >480 papers 

and edited 23 books. He runs a translational research institute; his main research 

interests include myocardial protection, the pathophysiology of cardioprotection in 

setting of diabetes mellitus, ischaemia–reperfusion injury, molecular aspects of 

adaptation to ischaemic injury, and myocardial conditioning in both the basic and clinical 

arena. 


