1,382 research outputs found

    A direct interareal feedback-to-feedforward circuit in primate visual cortex

    Get PDF
    The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FBto-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals

    Optogenetics in primate cortical networks

    Get PDF
    The implementation of optogenetics in studies on non-human primates has generally proven quite difficult, but recent successes have paved the way for its rapid increase. Limitations in the genetic tractability in primates, have been somewhat overcome by implementing tailored vectors and promoters to maximize expression and specificity in primates. More recently, implantable devices, including microLED arrays, have made it possible to deliver light deeper into brain tissue, allowing targeting of deeper structures. However, the greatest limitation in applying optogenetics to the primate brain is the complex connections that exist within many neural circuits. In the past, relatively cruder methods such as cooling or pharmacological blockade have been used to examine neural circuit functions, though their limitations were well recognized. In some ways, similar shortcomings remain for optogenetics, with the ability to target a single component of complex neural circuits being the greatest challenge in applying optogenetics to systems neuroscience in primate brains. Despite this, some recent approaches combining Cre-expressing and Cre-dependent vectors have overcome some of these limitations. Here we suggest that optogenetics provides its greatest advantage to systems neuroscientists when applied as a specific tool to complement the techniques of the past, rather than necessarily replacing them

    Ten_m3 Regulates Eye-Specific Patterning in the Mammalian Visual Pathway and Is Required for Binocular Vision

    Get PDF
    Binocular vision requires an exquisite matching of projections from each eye to form a cohesive representation of the visual world. Eye-specific inputs are anatomically segregated, but in register in the visual thalamus, and overlap within the binocular region of primary visual cortex. Here, we show that the transmembrane protein Ten_m3 regulates the alignment of ipsilateral and contralateral projections. It is expressed in a gradient in the developing visual pathway, which is consistently highest in regions that represent dorsal visual field. Mice that lack Ten_m3 show profound abnormalities in mapping of ipsilateral, but not contralateral, projections, and exhibit pronounced deficits when performing visually mediated behavioural tasks. It is likely that the functional deficits arise from the interocular mismatch, because they are reversed by acute monocular inactivation. We conclude that Ten_m3 plays a key regulatory role in the development of aligned binocular maps, which are required for normal vision

    Orientation preference maps in Microcebus murinus reveal size-invariant design principles in primate visual cortex

    Get PDF
    Orientation preference maps (OPMs) are a prominent feature of primary visual cortex (V1) organization in many primates and carnivores. In rodents, neurons are not organized in OPMs but are instead interspersed in a ‘‘salt and pepper’’ fashion, although clusters of orientation-selective neurons have been reported. Does this fundamental difference reflect the existence of a lower size limit for orientation columns (OCs) below which they cannot be scaled down with decreasing V1 size? To address this question, we examined V1 of one of the smallest living primates, the 60-g prosimian mouse lemur (Microcebus murinus). Using chronic intrinsic signal imaging, we found that mouse lemur V1 contains robust OCs, which are arranged in a pinwheel-like fashion. OC size in mouse lemurs was found to be only marginally smaller compared to the macaque, suggesting that these circuit elements are nearly incompressible. The spatial arrangement of pinwheels is well described by a common mathematical design of primate V1 circuit organization. In order to accommodate OPMs, we found that the mouse lemur V1 covers one-fifth of the cortical surface, which is one of the largest V1-to-cortex ratios found in primates. These results indicate that the primate-type visual cortical circuit organization is constrained by a size limitation and raises the possibility that its emergence might have evolved by disruptive innovation rather than gradual change

    Pelargonium sidoides root extract for the treatment of acute cough due to lower respiratory tract infection in adults::a feasibility double-blind, placebo-controlled randomised trial

    Get PDF
    BACKGROUND: Pelargonium sidoides DC (Geraniaceae) root extract, EPs®7630 or "Kaloba®", is a widely used herbal remedy for respiratory infections, with some evidence of effectiveness for acute bronchitis. However, it is not yet widely recommended by medical professionals in the UK. There is a need to undertake appropriately designed randomised trials to test its use as an alternative to antibiotics. The aim was to assess the feasibility of conducting a double-blind randomised controlled trial of Pelargonium sidoides root extract for treatment of acute bronchitis in UK primary care, investigating intervention compliance, patient preference for dosage form and acceptability of patient diaries.STUDY DESIGN: Feasibility double-blind randomised placebo-controlled clinical trial.METHODS: We aimed to recruit 160 patients with cough (≤ 21 days) caused by acute bronchitis from UK general practices. Practices were cluster-randomised to liquid or tablet preparations and patients were individually randomised to Kaloba® or placebo. We followed participants up for 28 days through self-reported patient diaries with telephone support and reviewed medical records at one month. Outcomes included recruitment, withdrawal, safety, reconsultation and symptom diary completion rates. We also assessed treatment adherence, antibiotic prescribing and consumption, mean symptom severity (at days 2-4 after randomisation) and time to symptom resolution. We interviewed 29 patients and 11 health professionals to identify barriers and facilitators to running such a randomised trial.RESULTS: Of 543 patients screened, 261 were eligible, of whom 134 (51%) were recruited and 103 (77%) returned a completed diary. Overall, 41% (41/100) of patients took antibiotics (Kaloba® liquid group: 48% [15/31]; placebo liquid group: 23% [6/26]; Kaloba® tablet group: 48% [9/21]; placebo tablet group: 50% [11/22]). Most patients adhered to the study medication (median 19 out of 21 doses taken in week 1, IQR 18-21 - all arms combined). There were no serious adverse events relating to treatment. Most patients interviewed found study recruitment to be straightforward, but some found the diary too complex.CONCLUSIONS: It was feasible and acceptable to recruit patients from UK primary care to a double-blind placebo-controlled trial of herbal medicine (Kaloba®) for the treatment of acute bronchitis, with good retention and low data attrition.TRIAL REGISTRATION: HATRIC was registered on the ISRCTN registry ( ISRCTN17672884 ) on 16 August 2018, retrospectively registered. The record can be found at http://www.isrctn.com/ISRCTN17672884 .</p

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF
    corecore