331 research outputs found

    Cell-Based Modeling

    Get PDF
    A cell-based model is a simulation model that predicts collective behavior of cell-clusters from the behavior and interactions of individual cells. The inputs to a cell-based model are cell behaviors as observed in experiments or deriving from single cell models, including the cellular responses to cues from the micro-environment. The cell behaviors are encoded in a set of biologically plausible rules that the simulated cells will follow. The outputs of a cell-based model are the patterns and behaviors that follow indirectly from the cell behaviors and the cellular interactions. Cell-based models resemble agent-based models, but typically contain more biophysically-detailed descriptions of the individual cells

    Blood Vessel Tortuosity Selects against Evolution of Agressive Tumor Cells in Confined Tissue Environments: a Modeling Approach

    Get PDF
    Cancer is a disease of cellular regulation, often initiated by genetic mutation within cells, and leading to a heterogeneous cell population within tissues. In the competition for nutrients and growth space within the tumors the phenotype of each cell determines its success. Selection in this process is imposed by both the microenvironment (neighboring cells, extracellular matrix, and diffusing substances), and the whole of the organism through for example the blood supply. In this view, the development of tumor cells is in close interaction with their increasingly changing environment: the more cells can change, the more their environment will change. Furthermore, instabilities are also introduced on the organism level: blood supply can be blocked by increased tissue pressure or the tortuosity of the tumor-neovascular vessels. This coupling between cell, microenvironment, and organism results in behavior that is hard to predict. Here we introduce a cell-based computational model to study the effect of blood flow obstruction on the micro-evolution of cells within a cancerous tissue. We demonstrate that stages of tumor development emerge naturally, without the need for sequential mutation of specific genes. Secondly, we show that instabilities in blood supply can impact the overall development of tumors and lead to the extinction of the dominant aggressive phenotype, showing a clear distinction between the fitness at the cell level and survival of the population. This provides new insights into potential side effects of recent tumor vasculature renormalization approaches

    Discrete explorations of multicellular growth and morphogenesis

    Get PDF

    Vascular networks due to dynamically arrested crystalline ordering of elongated cells

    Get PDF
    Recent experimental and theoretical studies suggest that crystallization and glass-like solidification are useful analogies for understanding cell ordering in confluent biological tissues. It remains unexplored how cellular ordering contributes to pattern formation during morphogenesis. With a computational model we show that a system of elongated, cohering biological cells can get dynamically arrested in a network pattern. Our model provides a new explanation for the formation of cellular networks in culture systems that exclude intercellular interaction via chemotaxis or mechanical traction.Comment: 11 pages, 4 figures. Published as: Palm and Merks (2013) Physical Review E 87, 012725. The present version includes a correction in the calculation of the nematic order parameter. Erratum submitted to PRE on Jun 5th 2013. The correction does not affect the conclusion

    Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation

    Get PDF
    Computational modelling is helpful for elucidating the cellular mechanisms driving biological morphogenesis. Previous simulation studies of blood vessel growth based on the Cellular Potts model (CPM) proposed that elongated, adhesive or mutually attractive endothelial cells suffice for the formation of blood vessel sprouts and vascular networks. Because each mathematical representation of a model introduces potential artifacts, it is important that model results are reproduced using alternative modelling paradigms. Here, we present a lattice-free, particle-based simulation of the cell elongation model of vasculogenesis. The new, particle-based simulations confirm the results obtained from the previous Cellular Potts simulations. Furthermore, our current findings suggest that the emergence of order is possible with the application of a high enough attractive force or, alternatively, a longer attraction radius. The methodology will be applicable to a range of problems in morphogenesis and noisy particle aggregation in which cell shape is a key determining factor.Comment: 9 pages, 11 figures, 2 supplementary videos (on Youtube), submitted to Computational Particle Mechanics, special issue: Jos\'e-Manuel Garcia Aznar (Ed.) Particle-based simulations on cell and biomolecular mechanic

    Cellular Potts modeling of tumor growth, tumor invasion and tumor evolution

    Get PDF
    Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell “successful” in an environment of healthy and cancerous cells, and how? A widely-used tool for getting more insight into that question is cell-based modeling. Cell based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell- and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development

    Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling

    Get PDF
    Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in vitro. This review discusses two cell culture models of morphogenesis that have been studied using this combined experimental-mathematical approach: chondrogenesis (cartilage patterning) and vasculogenesis (de novo blood vessel growth). In both these systems, radically dif- ferent models can equally plausibly explain the in vitro patterns. Quantitative descriptions of cell behavior would help choose between alternative models. We will briefly review the experimental methodology (microfluidics technology and traction force microscopy) used to measure responses of individual cells to their micro-environment, including chemical gradients, physical forces and neighboring cells. We conclude by discussing how to include quantitative cell descriptions into a cell-based model: the Cellular Potts model
    corecore