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Short Definition

A cell-based model is a simulation model that predicts collective behavior of cell-

clusters from the behavior and interactions of individual cells. The inputs to a cell-

based model are cell behaviors as observed in experiments or deriving from single

cell models, including the cellular responses to cues from the micro-environment. The

cell behaviors are encoded in a set of biologically plausible rules that the simulated

cells will follow. The outputs of a cell-based model are the patterns and behaviors
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that follow indirectly from the cell behaviors and the cellular interactions. Cell-based

models resemble agent-based models, but typically contain more biophysically-detailed

descriptions of the individual cells.

Description

Computational and mathematical modeling are becoming central tools in developmen-

tal biology, the study of embryonic and post-embryonic development of multicellular

animals and plants, and is instrumental in unraveling cellular coordination. A good

computational model lays down the biological knowledge in a structured framework, in

particular the interactions between the system components. It then predicts the struc-

tures and dynamics the interactions between biological components produce, and in

this way helps shape new biological hypotheses. Discrepancies between the biological

system and the model point at gaps in our understanding, and suggest new experiments

whose results will refine our models. Thus, a systematic cycle between model and ex-

periment produces true insights in biological mechanisms, not just in the molecules

that are part of the process.

Cell-based models start from the premise that cell behavior is central to

unraveling biological development. What a cell can do (e.g. move, secrete a signal,

etc.) depends of course on what genes it expresses or has access to. However, what it

actually does depends also on its microenvironment: what signals does it receive from

neighboring cells and from the structural proteins these cells secrete? How flexible is the

surrounding tissue, and how does the microenvironment change in response to the cells

manipulations, e.g., secretion of proteolytic enzymes or pulling and pushing forces?

The collective behavior of tissues then follows a) the behavior of the constituent

individual cells, and b) the shapes and patterns produced by these individual behaviors,

and c) the responses of the cells to the new environment they have produced collectively.
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Cell-based models are instrumental in predicting the collective cell behavior

following from individual cell behaviors. The inputs to a cell-based model are the

experimentally observed cell behaviors and the cellular responses to cues from the

micro-environment. These are encoded in a set of biologically plausible rules that the

simulated cells will follow. The outputs of the cell-based model are the patterns that

follow indirectly from the cell behaviors, e.g., a vascular network (Merks et al 2006).

These model outputs result from the cellular coordination that follows non-trivially

from the cell behaviors and the responses of the cells to the microenvironment they

themselves produce. Cell-based methods have been successful in unraveling processes

in developmental biology and in biomedicine (reviewed in Merks and Glazier 2005).

Collective and individual cell motility are the main driving forces of animal mor-

phogenesis. The cells in a developing animal swarm, migrate, mix or sort out and divide

- thus developing animal tissues essentially behave as living clays in which biological

form and pattern arise primarily through cell motility. Hence, most computational tech-

niques focus on providing descriptions of cell motility, and on the forces the individual

cells exert on each other.

Cell-based modeling methodologies for animal development differ in the level of

detail by which they describe the cells and by the level of detail by which the positions

of the cells can be described. Figure 1 schematically depicts the main mathematical

representations of cells in common use. Single-particle methods describe cells as point

particles or as spherical particles. Multi-particle methods use a collection of particles to

describe a cell and can therefore include more detail on the shape and motility of the

cells. A further distinction is made between lattice-based methods in which the particles

live on the coordinates of a lattice, and off-lattice that use real numbers to describe

the particle coordinates.
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Fig. 1. Schematic depiction of common cell representations in cell-based modeling methodologies. The

same configuration of three cells is shown in a single-particle, lattice-based model (e.g. lattice gases),

in a multi-particle lattice-based model (e.g., the Cellular Potts model), in a single-particle, off-lattice

model, and in a multiparticle off-lattice model. Single-particle, off-lattice models describe cells either

as point particles or as ellipsoids. Multiparticle, off-lattice models can describe the boundaries of the

cells or the cells’ interiors.

From a computational perspective, these methods differ in the way the cells

are represented in memory and in the algorithms used, and therefore each has its own

advantages and disadvantages. In lattice-based methods determining the neighbors of

cell is straightforward (just look at adjacent lattice sites), while inserting a cell during

cell division is difficult because the surrounding tissue must be shifted over the whole

lattice. In an off-lattice method finding neighbors is challenging - in a naive algorithm
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Fig. 2. Applications of cell-based modeling in developmental biology: (A) lattice-gas cellular automata

model of tumor invasion, with isotropic particles (Hatzikirou et al 2010); (B) three-dimensional lattice-

gas cellular automata model of fruiting body formation in myxobacteria, with elongated particles

(Sozinova et al 2006); (C) cellular Potts model of vascular tumor growth (Shirinifard et al 2009); (D)

Delaunay-Object-Dynamics of germinal center dynamics (Beyer and Meyer-Hermann 2008), scale bar

100 µm; (E) cell-based, off-lattice model of hepatic tissue expansion during liver regeneration (modified

after Hoehme et al (2010); also see article by Drasdo in this Encyclopedia); (F) cell-based model

of plant tissue growth (Merks et al 2011); (G) cell-fluctuation-free model of cell sorting using a finite-

element method (Hutson et al 2008); (H) cluster of cells modeled in biomechanical detail, with the

subcellular element model (Sandersius and Newman 2008).
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the positions of all cells would need to be compared with each other - while moving a

cell or part of the tissue is easier than in a lattice-based algorithm.

Single particle methods

Single-particle methods can describe cells as points on a lattice (Figure 1A), off lattice,

as points with real coordinates with the cell boundaries represented by their Voronoi

planes (Fig. 1C-1) or as spherical or ellipsoid particles (Figure 1C-2). An example of a

lattice-based, single particle cell-based simulation system are lattice gases. Lattice gases

have been originally developed for fluid dynamics simulations. Because they model the

movement of particles over a lattice and their change of direction due to collisions, they

can be applied more generally as agent-based systems and have been used to model

cellular interactions and pattern formation in bacterial and animal systems. Deutsch

and coworkers have used lattice gases for modeling invasion of tumors (Figure 2A;

Hatzikirou et al 2010), and for modeling myxobacterial slime molds (Börner et al

2006), a unicellular organism that aggregates to form mushroom-like fruiting bodies to

sporulate.

A limitation of lattice gases is that they cannot straightforwardly represent

the shape of individual cells. Therefore Alber and coworkers have taken the lattice

gas approach one step further and explicitly represent the rod shaped cells in their

lattice gas model, where the interaction rules of the bacteria depend on the relative cell

orientation. Their model shows that motile, rod-shaped myxobacteria can aggregate

and form fruiting bodies (Figure 2B) due to direct contact dependent interactions

causing traffic jams (Sozinova et al 2005).

Lattice gases are a useful for sparse cellular systems with highly motile, swarm-

ing cells, in which the shape of individual cells does not need to be described in detail.

In most plant or animal or plant tissues the cells partially or completely tesselate the

space, and in such cases more detailed descriptions of the tissues are required. Off-



7

lattice, point methods describe tissues as a set of points in space, where the cells and

the contact area between cells is given by a Voronoi tesselation (Schaller and Meyer-

Hermann 2004). This method, called Delaunay-Object-Dynamics, models cell motility

by moving the points and updating the Voronoi tesselation, and cell division is mod-

elled by duplicating the points. The method has later been extended so it can represent

both sparse and dense tissues. In this model of tumor spheroid growth spheres represent

isolated cells, and Voronoi tesselations describe denser parts of the tissues (Figure 2D;

Schaller and Meyer-Hermann 2005).

The cell-based models by Drasdo and coworkers (Hoehme et al 2010; Byrne

and Drasdo 2009; Drasdo 2000) and Palsson and Othmer (2000) represent cells as

spheres or ellipsoids. In these methods the forces the cells exert on each other and

on their surroundings result in cell movements, often combined with random motility

component. They have been applied to a range of problems including the development

of the cellular slime mold Dictyostelium discoideum (Palsson and Othmer 2000) and

liver development (Figure 2E; Hoehme et al 2010). For a detailed review of this class

of off-lattice models, see Galle et al (2006).

Multiple-particle methods

A disadvantage of single particle methods is that they often necessarily simplify cell

shape to spheres, ellipsoids or Voronoi regions, and that cell motility is simplified

as translation of the center of mass of the cell. In reality, most animal cells’ move

by stochastically extending and retracting membrane sections called pseudopods. A

detailed description of the stochastic membrane ruffling driving animal cell motility is

required for understanding morphogenetic processes. For example, cells in embryonic

tissues can be sort out depending on how strongly they adhere to one another, a process

called differential-adhesion cell sorting (Steinberg 2007). Such cell sorting requires a

accurate description of stochastic cell movement. Cell-based methods that describe
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biological cells as collections of particles or in terms of cell perimeter can describe such

stochastic cell motility in much more detail.

Cellular Potts Model

The Cellular Potts model (CPM), also known as the Glazier-Graner-Hogeweg model,

is a lattice-based Monte-Carlo approach that describes biological cells as spatially-

extended patches of identical lattice indices (Figure 1C). Intercellular junctions and

cell junctions to the ECM determine adhesive (or binding) energies. The CPM algo-

rithm models pseudopod protrusions by iteratively displacing cell interfaces, with a

preference for displacements that reduce a local effective energy H of the configuration.

Cells reorganize to favor stronger rather than weaker cell-cell and cell-ECM bonds and

shorter rather than longer cell boundaries. Further constraints regulate cell volumes,

surface areas, cortical tension, cell shape, and chemotaxis. The Cellular Potts model

has been succesfully applied to a wide range of biological problems, including the life

cycle of the cellular slime mold Dictyostelium discoideum (Maree and Hogeweg 2002),

blood vessel development (Merks et al 2006), vascular tumor growth (Shirinifard et al

2009), early chick development (Vasiev et al 2010), and T-cell migration patterns in

lymph nodes (Beltman et al 2007).

Off-lattice multiparticle methods

More recently, several off-lattice multiparticle methods have been introduced. Alber and

coworkers use a coarse-grained approach to model rod-shaped, motile myxobacteria as

small collections of around three particles coupled with Hookean springs (Wu et al

2009); an energy-minimization approach, similar to the Cellular Potts model, is used

to describe cell motion. Typical multiparticle methods use larger set of particles to

describe cells. Newman’s subcellular element model (Newman 2005) describes cells as

2D or 3D sets of strongly connected particles (Figure 1). Cells are connected via weak
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bonds and cells can migrate or slide along one another by randomly constructing and

breaking connections to adjacent cells. Because of the detailed description of the cells’

cytoskeleton, the method is suitable for quantitative, rheological descriptions of the

visco-elastic properties of cells (Figure 2H; Sandersius and Newman 2008). A similar

multiparticle method was introduced by Herman Ramon and coworkers (Liedekerke

et al 2010).

Other multiparticle cell-based methods provide more or less detailed, finite-

element descriptions of the cell boundaries, combined with continuum descriptions of

the cell’s interior. Honda and coworkers place vertices at the interfaces between at least

three cells. The visco-elastic properties of the cell membranes and the resulting motion

of the vertices are described using continuum equations. The method was recently

applied to a model of symmetry breaking in the early, pre-implantation mouse embryo

(Honda et al 2008). Odell et al (1981) and Sherrard et al (2010) have introduced

a similar finite-element model that describes cell surface tensions and describes the

cytoplasm as an incompressible fluid. Brodland and Clausi (1994), Hutson et al (2008)

(Figure 2G), and Tamulonis et al (2010) add neighbor changes to such tension-based

finite element models of cell-boundary dynamics. The immersed boundary method

introduced by Rejniak (2007) takes a similar boundary-oriented approach, but resolves

both the cellular boundary and in particular the intracellular fluid in more detail.

The method describes the cell membrane using a collection of particles connected by

springs; the cytoplasm is modeled as a viscous fluid modeled in detail by the Navier-

Stokes equations that are solved on a grid.

Plant development: symplastic development

Most cell-based simulation methods focus on simulating collective cell motility in an-

imal development. In plants and some animal tissues (e.g., in epithelia) the relative

positions of the cells are practically fixed, and only cell division and changes in cell
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shape affect tissue shape. In addition, the rigid cell walls of plant cells play a key role

in regulating cell expansion and overall tissue mechanics. Therefore questions in plant

development requires a different choice of cell-based modeling method than animal

development. A few cell-based simulation techniques have specialized on plant devel-

opment. vv-Systems is a two-dimensional rewriting grammar to model cell division;

its has been applied in a number of recent studies on plant development (e.g., Smith

et al 2006). vv-Systems often specify a morphological transformation of the tissue as a

whole. A cell division algorithm then partitions the resulting space; thus in vv-systems

tissue morphologenesis is not necessarily driven by collective cell behavior as in other

cell-based methodology. The methods by Corson et al (2009) and Merks et al (2007)

(Figure 2F) resemble the off-lattice, animal cell-boundary based methods by Honda

et al (2008), Odell et al (1981), and Brodland and Clausi (1994). They keep the cells’

relative positions fixed and describe in detail the biomechanical responses of the plant

cell wall and the adjacent cell membranes to events in the cells.

Future developments

Cell-based computational methods can help unraveling how individual cell behavior and

cell interactions drive biological growth and development. They can simulate biological

development in amazing detail. A limitation of the computational methods used in cell-

based modeling is that making generic statements on the behavior of a model is hard.

The simulations must be repeated for large range of parameter values before any generic

statement can be made. Recent efforts aim to develop mean-field approximations of cell-

based models, such that simplified, analytical models can be derived from cell-based

model descriptions (see, e.g., Byrne and Drasdo 2009; Turner et al 2004; Lushnikov et al

2008). Although in such continuum approximations of cell-based models inevitably

details are lost, they may eventually assist in deriving analytical approximations of

cell-based models.
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Another danger in cell-based modeling is that some observations may re-

sult from the biological hypothesis represented by the model, while other observa-

tion may be the result of model-specific simulation artifacts. Therefore it is im-

portant to simulate a model using a range of cell-based modeling methodologies.

To do so currently the user must rebuild his or her simulation for each of the

available cell-based models. The ongoing cell behavioral ontology (CBO) initiative

http://bioportal.bioontology.org/ontologies/39336 aims to provide a well-defined

set of terms for describing the behavior of animal, plant, or bacterial cells. A biological

modeling language derived from the CBO would make it possible to define the model

entirely in a conceptual language familiar to biologists. This will make it possible to

define a model once, and test it in all compatible cell-based modeling packages.

Cell-based modeling software

A number of Open Source software packages and programming libraries are available

for constructing lattice-based or off-lattice cell-based simulations with relatively little

effort.

CompuCell3D (http://www.compucell3D.org) is an extensive software pack-

age for constructing three-dimensional and two-dimensional cell-based simulations

based on the Cellular Potts model. Using an XML and Python interface, users can

easily construct simulations based on the standard cell behaviors of the Cellular

Potts model, e.g. differential adhesion and chemotaxis. Its modular architecture makes

it possible to build user-defined cell behaviors using C++. The Tissue Simulation

Toolkit (http://sourceforge.net/projects/tst/) is a C++ library for building two-

dimensional Cellular Potts simulations.

Chaste (Cancer, heart and soft-tissue environment; Pitt-Francis et al. 2009)

provides a set of C++ libraries for developing off-lattice, single-particle cell-based sim-
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ulations of animal tissues. It represents cells by its centers and connects cells with

virtual springs.

L-studio (http://algorithmicbotany.org/virtual_laboratory/) is an ex-

tensive suite for modeling plants. It includes software for building L-systems and vv-

systems simulations of plant tissues.

VirtualLeaf (http://code.google.com/p/virtualleaf/ and Merks et al 2011)

implements a plant-specific, cell-based methodology for cell-based plant tissue simula-

tion. Users can define their models by implementing a C++ model description plugin,

using objects corresponding a biological entities, including molecules, cells, and cell

walls.
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