183 research outputs found

    Training in Professional Pharmacy Services through Educational Videos

    Get PDF
    The authors express thanks to Faculty of Pharmacy, University of Granada, Spain; to the actors and actresses who played the role in each video; and to the professional technicians who produced and edited the videos.Objectives: Pharmaceutical Care is a subject within the Pharmacy degree that can not only be taught using theoretical frameworks but also requires new teaching tools, like a simulated educational video. The objective of this study is to produce simulated patientbased videos as a supplementary teaching tool to deepen the understanding and knowledge of Professional Pharmacy Services. Design: Several videos based on simulated patient cases of the most prevalent Professional Pharmacy Services (medication adherence, medication review with follow-up, dispensing and minor ailment service) were produced and used as a teaching tool within a theoretical lesson in undergraduate and professional training. Methods: A prospective study was performed in two groups: undergraduate students and professional pharmacist. Their opinion about these Educational Videos was evaluated through a questionnaire on a 1-10 scale. Frequencies mean ± standard deviation, median and internal consistency of the survey were analyzed. Values of p<0.05 were considered significant. Results: Undergraduate students (n=90) and professional pharmacists from Master classes (n=59) completed the questionnaire (Cronbach’s α coefficient was 0.8). Statistically significant differences were found in some relevant items between both groups of students, related to the content’s clarity (9.12±1.11 vs 9.72±0.57; p=0.003), simulation of reality (6.60±2.26 vs 8.47±1.23; p<0.001) and correspondence with theory (9.23±1.07 vs 9.64±0.68; p=0.037). General score and most items were rated higher by professional pharmacists than undergraduate students (8.19±0.96 vs 8.84±1.10; p=0.001). Conclusion: Educational videos are an adequate tool for teaching Pharmaceutical Care, adding new layers of learning to Professional Pharmacy Services

    Adaptation of practical classes of clinical subjects in the COVID-19 era

    Get PDF
    Pharmaceutical Care is a subject within the Pharmacy Degree that is taught using theoretical and practical classes. When COVID-19 appeared, Faculty of Pharmacy had to change its way of teaching and learning to online classes. Our aim is to assess the impact of COVID-19 situation on practical classes in Pharmaceutical Care. A prospective study was performed by undergraduate students from Pharmaceutical Care subject. Students attended to 2-day practical classes and were assessed through an evaluative workbook. Undergraduate students (n=390) obtained a score of 8.4±0.8 in practical classes, being higher in face-to-face sessions than online sessions, but not significant differences among both methodologies. The higher score was for the session of minor ailment services (9.3±1.3) and the lower for Personalized Medication Dosage (7.0±1.6) and similar in both scenarios. 59% of students obtained more than 8 score in the global punctuation, being higher in in-face-to-face practical classes. This study showed that learning in health care can be guided and evaluated through an online method. Adapt to new technologies, prevent vulnerable students from being left behind, as well as working on cross-cutting skills at a distance, are some of the challenges of higher education in times of COVID-19

    Intervention model for detection, prevention and control of COVID-19 in community pharmacy

    Get PDF
    The announcement by the WHO of the characterization of the new Coronavirus 2019 disease (COVID-19) as a pandemic, entails an adaptation by the community pharmacy in carrying out its care activity in general, with particular emphasis on ”Minor Ailments Service” in particular. The measures taken by the different health administrations in which patient telephone care by primary care offices is prioritized have left more consultations on symptoms in the community pharmacist health-related problems as pharmacies are the closest health facilities to the patient. The similarity between the symptomatology caused by the new Coronavirus with that of some Enteroviruses that cause mild respiratory and gastrointestinal tables (dry cough, fever, sore throat, vomiting, diarrhoea, etc.) makes community pharmacies highly capable places for contagion detection and prevention. A model of protocolized intervention is needed to facilitate the pharmacist’s work in discriminating during the indication between minor symptoms and symptoms of referral for possible cases of COVID-19 so that in conjunction with the rest of the staff we help control the disease and make better use of primary care consultations

    Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power

    Get PDF
    Nanofluids are colloidal suspensions of nanomaterials in a fluid which exhibit enhanced thermophysical properties compared to conventional fluids. The addition of nanomaterials to a fluid can increase the thermal conductivity, isobaric-specific heat, diffusivity, and the convective heat transfer coefficient of the original fluid. For this reason, nanofluids have been studied over the last decades in many fields such as biomedicine, industrial cooling, nuclear reactors, and also in solar thermal applications. In this paper, we report the preparation and characterization of nanofluids based on one-dimensional MoS2 and WS2 nanosheets to improve the thermal properties of the heat transfer fluid currently used in concentrating solar plants (CSP). A comparative study of both types of nanofluids was performed for explaining the influence of nanostructure morphologies on nanofluid stability and thermal properties. The nanofluids prepared in this work present a high stability over time and thermal conductivity enhancements of up to 46% for MoS2-based nanofluid and up to 35% for WS2-based nanofluid. These results led to an increase in the efficiency of the solar collectors of 21.3% and 16.8% when the nanofluids based on MoS2 nanowires or WS2 nanosheets were used instead of the typical thermal oil

    Community pharmacy is the key to improving vitamin D levels

    Get PDF
    Introduction: Vitamin D is an essential micronutrient that participates in the body's fundamental physiological processes. The pharmacist should involve the patient in his medication adherence, leading to a change in the patient's attitude towards his medication and towards his health problem, in order to achieve the pharmacological objective set. Methods: Quasi-experimental multicenter study design with non-probabilistic convenience sampling. A pharmacist-led intervention in health educationwas carried out, divided in two groups, face-to-face interviewand on-line survey, and the results were evaluated 3 months later to observe if there was any change in the patient's health status or in their vitamin D levels. Results: The study was conducted in four pharmacies through face-to-face interviews (n=49 patients) and online surveys (n = 23). Pharmaceutical intervention improved habits of exercise (0.81 ± 1.44 days/week face-to-face interviews vs −0.09 ± 2.35 days/week online surveys (p = 0.048)). In face-to-face interviews, consumption of vitamin D-rich foods was increased (0.55 unit of tuna/week; p = 0.035 and 0.56 unit of avocado/week; p = 0.001) and was improved correct intake of vitamin D supplements (32.5% baseline to 69.8% at 3 months). The increase in 25- hydroxyvitamin D levels (11.5 ng/mL after 3 months (p = 0.021)) was correlated to salmon consumption (0.951; p = 0.013) and the improvement of quality of life was correlated to avocado consumption (1; p < 0.001). Conclusion: There are habits that improve vitamin D production such as increased physical activity, the correct use of vitamin D supplements and the consumption of foods with high vitamin D levels. The role of the pharmacist is crucial, involving the patient in the treatment making aware of the benefits for his/her health status of increasing vitamin D levels

    Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System

    Full text link
    [EN] In this work, 6-phosphogluconic trisodium salt (6-PG(-)Na(+)) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG(-)Na(+). This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This AWN formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG(-)Na(+)) as a nontoxic cross-linker applicable for cationic polymers.The authors acknowledge partial financial support to project SAF2016-78756 from MINECO (Spanish Ministry of economy, industry and competitiveness). Maria Teresa Martinez Martinez received a grant from the Ministry of Education and Science of Spain (FPU13-01105). The product was patented in Spain in 2016 by authors of this paper. Patent application 201631463.Martínez Martínez, M.; Rodríguez Berna, G.; Gonzalez-Alvarez, I.; Hernández, MJ.; Corma Canós, A.; Bermejo, M.; Merino Sanjuán, V.... (2018). Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System. Biomacromolecules. 19(4):1294-1304. https://doi.org/10.1021/acs.biomac.8b00108S1294130419

    New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy

    Full text link
    [EN] Colonic Drug Delivery Systems (CDDS) are especially advantageous for local treatment of inflammatory bowel diseases (IBD). Site-targeted drug release allows to obtain a high drug concentration in injured tissues and less systemic adverse effects, as consequence of less/null drug absorption in small intestine. This review focused on the reported contributions in the last four years to improve the effectiveness of treatments of inflammatory bowel diseases. The work concludes that there has been an increase in the development of CDDS in which pH, specific enzymes, reactive oxygen species (ROS), or a combination of all of these triggers the release. These delivery systems demonstrated a therapeutic improvement with fewer adverse effects. Future perspectives to the treatment of this disease include the elucidation of molecular basis of IBD diseases in order to design more specific treatments, and the performance of more in vivo assays to validate the specificity and stability of the obtained systems.The authors want to thank the Spanish Government (project RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (project PROMETEO/2018/024) for support. This work was also supported by the project "MODELOS IN VITRO DE EVALUACION BIOFARMACEUTICA" SAF2016-78756(AEI/FEDER, EU) funded by Agencia Estatal Investigacion and European Union, through FEDER (Fondo Europeo de Desarrollo Regional).Hernández Teruel, A.; Gonzalez-Alvarez, I.; Bermejo, M.; Merino Sanjuán, V.; Marcos Martínez, MD.; Sancenón Galarza, F.; Gonzalez-Alvarez, M.... (2020). New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. International Journal of Molecular Sciences. 21(18):1-30. https://doi.org/10.3390/ijms21186502S1302118Lautenschläger, C., Schmidt, C., Fischer, D., & Stallmach, A. (2014). Drug delivery strategies in the therapy of inflammatory bowel disease. Advanced Drug Delivery Reviews, 71, 58-76. doi:10.1016/j.addr.2013.10.001Nakai, D., Miyake, M., & Hashimoto, A. (2020). Comparison of the Intestinal Drug Permeation and Accumulation Between Normal Human Intestinal Tissues and Human Intestinal Tissues With Ulcerative Colitis. Journal of Pharmaceutical Sciences, 109(4), 1623-1626. doi:10.1016/j.xphs.2019.12.015Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Inflammatory Bowel Disease. Annual Review of Immunology, 28(1), 573-621. doi:10.1146/annurev-immunol-030409-101225Xu, X.-M., & Zhang, H.-J. (2016). miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World Journal of Gastroenterology, 22(7), 2206-2218. doi:10.3748/wjg.v22.i7.2206Kim, D. H., & Cheon, J. H. (2017). Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Network, 17(1), 25. doi:10.4110/in.2017.17.1.25Inflammatory Bowel Disease | British Society for Immunology https://www.immunology.org/es/public-information/bitesized-immunology/immune-dysfunction/enfermedad-inflamatoria-intestinalJay, M., Beihn, R. M., Digenis, G. A., Deland, F. H., Caldwell, L., & Mlodozeniec, A. R. (1985). Disposition of radiolabelled suppositories in humans. Journal of Pharmacy and Pharmacology, 37(4), 266-268. doi:10.1111/j.2042-7158.1985.tb05058.xNewton, A. M. J., & Lakshmanan, P. (2014). Effect of HPMC - E15 LV premium Polymer on Release Profile and Compression Characteristics of Chitosan/ Pectin Colon Targeted Mesalamine Matrix Tablets and in vitro Study on Effect of pH Impact on the Drug Release Profile. Recent Patents on Drug Delivery & Formulation, 8(1), 46-62. doi:10.2174/1872211308666140225143926DeFilippis, E. M., Longman, R., Harbus, M., Dannenberg, K., & Scherl, E. J. (2016). Crohn’s Disease: Evolution, Epigenetics, and the Emerging Role of Microbiome-Targeted Therapies. Current Gastroenterology Reports, 18(3). doi:10.1007/s11894-016-0487-zNeurath, M. F., & Travis, S. P. L. (2012). Mucosal healing in inflammatory bowel diseases: a systematic review. Gut, 61(11), 1619-1635. doi:10.1136/gutjnl-2012-302830Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117-1132. doi:10.1016/j.nano.2015.02.018Hu, Z., Mawatari, S., Shibata, N., Takada, K., Yoshikawa, H., Arakawa, A., & Yosida, Y. (2000). Pharmaceutical Research, 17(2), 160-167. doi:10.1023/a:1007561129221Rana, S. V., Sharma, S., Malik, A., Kaur, J., Prasad, K. K., Sinha, S. K., & Singh, K. (2013). Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 58(9), 2594-2598. doi:10.1007/s10620-013-2694-xPhilip, A., & Philip, B. (2010). Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches. Oman Medical Journal, 25(2), 70-78. doi:10.5001/omj.2010.24Rao, K. A. (2004). Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. British Journal of Sports Medicine, 38(4), 482-487. doi:10.1136/bjsm.2003.006825Podolsky, D. K. (2002). Inflammatory Bowel Disease. New England Journal of Medicine, 347(6), 417-429. doi:10.1056/nejmra020831Hebden, Blackshaw, Perkins, Wilson, & Spiller. (2000). Limited exposure of the healthy distal colon to orally-dosed formulation is further exaggerated in active left-sided ulcerative colitis. Alimentary Pharmacology & Therapeutics, 14(2), 155-161. doi:10.1046/j.1365-2036.2000.00697.xFallingborg, J., Christensen, L. A., Jacobsen, B. A., & Rasmussen, S. N. (1993). Very low intraluminal colonic pH in patients with active ulcerative colitis. Digestive Diseases and Sciences, 38(11), 1989-1993. doi:10.1007/bf01297074Bratten, J., & Jones, M. P. (2006). New Directions in the Assessment of Gastric Function: Clinical Applications of Physiologic Measurements. Digestive Diseases, 24(3-4), 252-259. doi:10.1159/000092878NUGENT, S. G. (2001). Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut, 48(4), 571-577. doi:10.1136/gut.48.4.571Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028Sinha, V. R., & Kumria, R. (2001). Pharmaceutical Research, 18(5), 557-564. doi:10.1023/a:1011033121528Gorbach, S. L. (1971). Intestinal Microflora. Gastroenterology, 60(6), 1110-1129. doi:10.1016/s0016-5085(71)80039-2Simon, G. L., & Gorbach, S. L. (1986). The human intestinal microflora. Digestive Diseases and Sciences, 31(S9), 147-162. doi:10.1007/bf01295996Rubinstein, A. (1990). Microbially controlled drug delivery to the colon. Biopharmaceutics & Drug Disposition, 11(6), 465-475. doi:10.1002/bdd.2510110602Sartor, R. B. (2008). Therapeutic correction of bacterial dysbiosis discovered by molecular techniques. Proceedings of the National Academy of Sciences, 105(43), 16413-16414. doi:10.1073/pnas.0809363105Liu, T.-C., & Stappenbeck, T. S. (2016). Genetics and Pathogenesis of Inflammatory Bowel Disease. Annual Review of Pathology: Mechanisms of Disease, 11(1), 127-148. doi:10.1146/annurev-pathol-012615-044152Xiao, B., & Merlin, D. (2012). Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opinion on Drug Delivery, 9(11), 1393-1407. doi:10.1517/17425247.2012.730517Lamprecht, A., Yamamoto, H., Takeuchi, H., & Kawashima, Y. (2005). Nanoparticles Enhance Therapeutic Efficiency by Selectively Increased Local Drug Dose in Experimental Colitis in Rats. Journal of Pharmacology and Experimental Therapeutics, 315(1), 196-202. doi:10.1124/jpet.105.088146Beloqui, A., Coco, R., Alhouayek, M., Solinís, M. Á., Rodríguez-Gascón, A., Muccioli, G. G., & Préat, V. (2013). Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. International Journal of Pharmaceutics, 454(2), 775-783. doi:10.1016/j.ijpharm.2013.05.017Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Pharmaceutical Research, 13(12), 1838-1845. doi:10.1023/a:1016085108889Naeem, M., Bae, J., A. Oshi, M., Kim, M.-S., Moon, H. R., Lee, B. L., … Yoo, J.-W. (2018). Colon-targeted delivery of cyclosporine A using dual-functional Eudragit&reg;&nbsp;FS30D/PLGA&nbsp;nanoparticles ameliorates murine experimental colitis. International Journal of Nanomedicine, Volume 13, 1225-1240. doi:10.2147/ijn.s157566Oshi, M. A., Naeem, M., Bae, J., Kim, J., Lee, J., Hasan, N., … Yoo, J.-W. (2018). Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydrate Polymers, 198, 434-442. doi:10.1016/j.carbpol.2018.06.107Date, A. A., Hanes, J., & Ensign, L. M. (2016). Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 240, 504-526. doi:10.1016/j.jconrel.2016.06.016Vass, P., Démuth, B., Hirsch, E., Nagy, B., Andersen, S. K., Vigh, T., … Marosi, G. (2019). Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 296, 162-178. doi:10.1016/j.jconrel.2019.01.023Taghipour, Y. D., Bahramsoltani, R., Marques, A. M., Naseri, R., Rahimi, R., Haratipour, P., … Abdollahi, M. (2018). A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. DARU Journal of Pharmaceutical Sciences, 26(2), 229-239. doi:10.1007/s40199-018-0222-4Zhang, M., & Merlin, D. (2018). Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflammatory Bowel Diseases, 24(7), 1401-1415. doi:10.1093/ibd/izy123Varum, F., Freire, A. C., Bravo, R., & Basit, A. W. (2020). OPTICORE™, an innovative and accurate colonic targeting technology. International Journal of Pharmaceutics, 583, 119372. doi:10.1016/j.ijpharm.2020.119372Lee, S. H., Bajracharya, R., Min, J. Y., Han, J.-W., Park, B. J., & Han, H.-K. (2020). Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics, 12(1), 68. doi:10.3390/pharmaceutics12010068Nidhi, Rashid, M., Kaur, V., Hallan, S. S., Sharma, S., & Mishra, N. (2016). Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharmaceutical Journal, 24(4), 458-472. doi:10.1016/j.jsps.2014.10.001Yoon, S.-W., Shin, D. H., & Kim, J.-S. (2019). Liposomal itraconazole formulation for the treatment of glioblastoma using inclusion complex with HP-β-CD. Journal of Pharmaceutical Investigation, 49(4), 477-483. doi:10.1007/s40005-019-00432-4Bazan, L., Bendas, E. R., El Gazayerly, O. N., & Badawy, S. S. (2016). Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro–in-vivo evaluation. Drug Delivery, 23(9), 3339-3349. doi:10.1080/10717544.2016.1178824Goyanes, A., Hatton, G. B., Merchant, H. A., & Basit, A. W. (2015). Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations. International Journal of Pharmaceutics, 484(1-2), 103-108. doi:10.1016/j.ijpharm.2015.02.051Ma, C., Battat, R., Dulai, P. S., Parker, C. E., Sandborn, W. J., Feagan, B. G., & Jairath, V. (2019). Innovations in Oral Therapies for Inflammatory Bowel Disease. Drugs, 79(12), 1321-1335. doi:10.1007/s40265-019-01169-yBak, A., Ashford, M., & Brayden, D. J. (2018). Local delivery of macromolecules to treat diseases associated with the colon. Advanced Drug Delivery Reviews, 136-137, 2-27. doi:10.1016/j.addr.2018.10.009Yu, A., Baker, J. R., Fioritto, A. F., Wang, Y., Luo, R., Li, S., … Sun, D. (2016). Measurement of in vivo Gastrointestinal Release and Dissolution of Three Locally Acting Mesalamine Formulations in Regions of the Human Gastrointestinal Tract. Molecular Pharmaceutics, 14(2), 345-358. doi:10.1021/acs.molpharmaceut.6b00641Ibekwe, V. C., Fadda, H. M., McConnell, E. L., Khela, M. K., Evans, D. F., & Basit, A. W. (2008). Interplay Between Intestinal pH, Transit Time and Feed Status on the In Vivo Performance of pH Responsive Ileo-Colonic Release Systems. Pharmaceutical Research, 25(8), 1828-1835. doi:10.1007/s11095-008-9580-9Mansuri, S., Kesharwani, P., Jain, K., Tekade, R. K., & Jain, N. K. (2016). Mucoadhesion: A promising approach in drug delivery system. Reactive and Functional Polymers, 100, 151-172. doi:10.1016/j.reactfunctpolym.2016.01.011Agüero, L., Zaldivar-Silva, D., Peña, L., & Dias, M. L. (2017). Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers, 168, 32-43. doi:10.1016/j.carbpol.2017.03.033Duan, H., Lü, S., Gao, C., Bai, X., Qin, H., Wei, Y., … Liu, M. (2016). Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids and Surfaces B: Biointerfaces, 145, 510-519. doi:10.1016/j.colsurfb.2016.05.038Cong, Z., Shi, Y., Wang, Y., Wang, Y., Niu, J., Chen, N., & Xue, H. (2018). A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. International Journal of Biological Macromolecules, 107, 855-864. doi:10.1016/j.ijbiomac.2017.09.065Gareb, B., Dijkstra, G., Kosterink, J. G. W., & Frijlink, H. W. (2019). Development of novel zero-order release budesonide tablets for the treatment of ileo-colonic inflammatory bowel disease and comparison with formulations currently used in clinical practice. International Journal of Pharmaceutics, 554, 366-375. doi:10.1016/j.ijpharm.2018.11.019Gareb, B., Posthumus, S., Beugeling, M., Koopmans, P., Touw, D. J., Dijkstra, G., … Frijlink, H. W. (2019). Towards the Oral Treatment of Ileo-Colonic Inflammatory Bowel Disease with Infliximab Tablets: Development and Validation of the Production Process. Pharmaceutics, 11(9), 428. doi:10.3390/pharmaceutics11090428González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., … Sancenón, F. (2017). Gated Mesoporous Silica Nanocarriers for a «Two-Step» Targeted System to Colonic Tissue. Molecular Pharmaceutics, 14(12), 4442-4453. doi:10.1021/acs.molpharmaceut.7b00565Deng, X.-Q., Zhang, H.-B., Wang, G.-F., Xu, D., Zhang, W.-Y., Wang, Q.-S., & Cui, Y.-L. (2019). Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. International Journal of Pharmaceutics, 570, 118644. doi:10.1016/j.ijpharm.2019.118644Shi, X., Yan, Y., Wang, P., Sun, Y., Zhang, D., Zou, Y., … Dong, Y. (2018). In vitro and in vivo study of pH-sensitive and colon-targeting P(LE-IA-MEG) hydrogel microspheres used for ulcerative colitis therapy. European Journal of Pharmaceutics and Biopharmaceutics, 122, 70-77. doi:10.1016/j.ejpb.2017.10.003Malviya, T., Joshi, S., Dwivedi, L. M., Baranwal, K., Shehala, Pandey, A. K., & Singh, V. (2018). Synthesis of Aloevera/Acrylonitrile based Nanoparticles for targeted drug delivery of 5-Aminosalicylic acid. International Journal of Biological Macromolecules, 106, 930-939. doi:10.1016/j.ijbiomac.2017.08.085Chen, J., Li, X., Chen, L., & Xie, F. (2018). Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydrate Polymers, 191, 242-254. doi:10.1016/j.carbpol.2018.03.025Günter, E. A., & Popeyko, O. V. (2016). Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydrate Polymers, 147, 490-499. doi:10.1016/j.carbpol.2016.04.026Qiao, H., Fang, D., Chen, J., Sun, Y., Kang, C., Di, L., … Gao, Y. (2017). Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Delivery, 24(1), 233-242. doi:10.1080/10717544.2016.1245367Morales‐Burgos, A. M., Carvajal‐Millan, E., Rascón‐Chu, A., Martínez‐López, A. L., Lizardi‐Mendoza, J., López‐Franco, Y. L., & Brown‐Bojorquez, F. (2019). Tailoring reversible insulin aggregates loaded in electrosprayed arabinoxylan microspheres intended for colon‐targeted delivery. Journal of Applied Polymer Science, 136(38), 47960. doi:10.1002/app.47960Miramontes-Corona, C., Escalante, A., Delgado, E., Corona-González, R. I., Vázquez-Torres, H., & Toriz, G. (2020). Hydrophobic agave fructans for sustained drug delivery to the human colon. Reactive and Functional Polymers, 146, 104396. doi:10.1016/j.reactfunctpolym.2019.104396Zhu, A. Z. X., Ho, M.-C. D., Gemski, C. K., Chuang, B.-C., Liao, M., & Xia, C. Q. (2016). Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: a Comparison with Physiologically Based Pharmacokinetic Modeling. The AAPS Journal, 18(6), 1512-1523. doi:10.1208/s12248-016-9972-4Barclay, T. G., Day, C. M., Petrovsky, N., & Garg, S. (2019). Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers, 221, 94-112. doi:10.1016/j.carbpol.2019.05.067Naeem, M., Kim, W., Cao, J., Jung, Y., & Yoo, J.-W. (2014). Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids and Surfaces B: Biointerfaces, 123, 271-278. doi:10.1016/j.colsurfb.2014.09.026Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 16(6), 2418-2429. doi:10.1021/acs.molpharmaceut.9b00041Rafii, F., Franklin, W., & Cerniglia, C. E. (1990). Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Applied and Environmental Microbiology, 56(7), 2146-2151. doi:10.1128/aem.56.7.2146-2151.1990Kaur, R., Gulati, M., & Singh, S. K. (2017). Role of synbiotics in polysaccharide assisted colon targeted microspheres of mesalamine for the treatment of ulcerative colitis. International Journal of Biological Macromolecules, 95, 438-450. doi:10.1016/j.ijbiomac.2016.11.066Ferri, D., Gaviña, P., Parra, M., Costero, A. M., El Haskouri, J., Amorós, P., … Martínez-Máñez, R. (2018). Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 5(8), 180873. doi:10.1098/rsos.180873Ma, Z.-G., Ma, R., Xiao, X.-L., Zhang, Y.-H., Zhang, X.-Z., Hu, N., … Sun, Z.-J. (2016). Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomaterialia, 44, 323-331. doi:10.1016/j.actbio.2016.08.021Karrout, Y., Dubuquoy, L., Piveteau, C., Siepmann, F., Moussa, E., Wils, D., … Siepmann, J. (2015). In vivo efficacy of microbiota-sensitive coatings for colon targeting: A promising tool for IBD therapy. Journal of Controlled Release, 197, 121-130. doi:10.1016/j.jconrel.2014.11.006Kumar, B., Kulanthaivel, S., Mondal, A., Mishra, S., Banerjee, B., Bhaumik, A., … Giri, S. (2017). Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids and Surfaces B: Biointerfaces, 150, 352-361. doi:10.1016/j.colsurfb.2016.10.049Yamada, K., Iwao, Y., Bani-Jaber, A., Noguchi, S., & Itai, S. (2015). Preparation and Evaluation of Newly Developed Chitosan Salt Coating Dispersions for Colon Delivery without Requiring Overcoating. CHEMICAL & PHARMACEUTICAL BULLETIN, 63(10), 799-806. doi:10.1248/cpb.c15-00308Amidon, S., Brown, J. E., & Dave, V. S. (2015). Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech, 16(4), 731-741. doi:10.1208/s12249-015-0350-9Dagli, Ü., Balk, M., Yücel, D., Ülker, A., Över, H., Saydam, G., & Şahin, B. (1997). The Role of Reactive Oxygen Metabolites in Ulcerative Colitis. Inflammatory Bowel Diseases, 3(4), 260-264. doi:10.1097/00054725-199712000-00003Simmonds, N. J., & Rampton, D. S. (1993). Inflammatory bowel disease--a radical view. Gut, 34(7), 865-868. doi:10.1136/gut.34.7.865GRISHAM, M. (1994). Oxidants and free radicals in inflammatory bowel disease. The Lancet, 344(8926), 859-861. doi:10.1016/s0140-6736(94)92831-2Zhang, Q., Tao, H., Lin, Y., Hu, Y., An, H., Zhang, D., … Zhang, J. (2016). A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 105, 206-221. doi:10.1016/j.biomaterials.2016.08.010Sedghi, S., Fields, J. Z., Klamut, M., Urban, G., Durkin, M., Winship, D., … Keshavarzian, A. (1993). Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut, 34(9), 1191-1197. doi:10.1136/gut.34.9.1191Simmonds, N. J., Allen, R. E., Stevens, T. R. J., Niall, R., Van Someren, M., Blake, D. R., & Rampton, D. S. (1992). Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology, 103(1), 186-196. doi:10.1016/0016-5085(92)91112-hVong, L. B., Mo, J., Abrahamsson, B., & Nagasaki, Y. (2015). Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. Journal of Controlled Release, 210, 19-25. doi:10.1016/j.jconrel.2015.05.275Vong, L. B., & Nagasaki, Y. (2

    Efecto de paricalcitol sobre el metabolismo mineralóseo en pacientes trasplantados renales con hiperparatiroidismo secundario

    Get PDF
    ResumenIntroducciónEl hiperparatiroidismo secundario es muy prevalente en pacientes trasplantados renales. Cursa con frecuencia con hipercalcemia y se ha asociado al desarrollo de osteopenia y fracturas óseas. El paricalcitol ha mostrado su eficacia en el control del hiperparatiroidismo secundario en la enfermedad renal crónica con y sin diálisis, con una baja incidencia de hipercalcemia. La experiencia con paricalcitol en trasplantados renales es muy escasa. El objetivo de este trabajo fue mostrar el efecto sobre el metabolismo mineralóseo del paricalcitol en trasplantados renales con hiperparatiroidismo secundario.Material y métodosEstudio retrospectivo multicéntrico con trasplantados renales de más de 18 años de edad y más de 12 meses de evolución postrasplante, con función renal estable, que hayan sido tratados con paricalcitol durante más de 12 meses, con seguimiento clínico hasta los 24 meses de tratamiento.ResultadosSe incluyó a 69 pacientes, con 120±92 meses postrasplante, con creatinina inicial de 2,2±0,9mg/dl y FG-MDRD 36±20ml/min/1,73 m2. La dosis de paricalcitol se incrementó progresivamente durante el estudio: basal 3,8±1,9μg/semana, 12 meses 5,2±2,4μg/semana; 24 meses 6,0±2,9μg/semana (p<0,001). Los niveles séricos de PTH descendieron de forma rápida y significativa: basal 288±152 pg/ml; 6 meses 226±184 pg/ml; 12 meses 207±120; 24 meses 193±119 pg/ml (p<0,001). Observamos una reducción sobre PTH basal ≥30% en el 42,4% de los pacientes a los 12 meses y en el 65,2% de los pacientes a los 24 meses. La fosfatasa alcalina descendió también significativamente en los 6 primeros meses para luego estabilizarse: basal 92±50 UI/l; 6 meses 85±36 UI/l, 12 meses 81±39 UI/l (p<0,001). Globalmente no hubo modificaciones en el calcio o fósforo séricos ni en la excreción urinaria de calcio. La reducción de PTH fue más importante en trasplantados con niveles séricos más elevados de partida. Observamos que los pacientes con calcio basal más bajo mostraron un incremento significativo de sus cifras de 0,5-0,6mg/dl en promedio aunque manteniéndose en rango de normalidad, mientras que pacientes con calcio basal>10mg/dl mostraron una reducción progresiva de sus cifras. Quince (21,7%) pacientes seguían tratamiento previo con calcitriol y al cambiarlos a paricalcitol precisaron dosis significativamente mayores que los pacientes que no habían recibido calcitriol. El paricalcitol fue asociado a cinacalcet en 11 pacientes, con reducciones significativas de PTH, con evolución similar al resto de la población y con dosis de paricalcitol también similares.ConclusionesParicalcitol es eficaz en el tratamiento del hiperparatiroidismo secundario de trasplantados renales. Globalmente no observamos modificaciones significativas de los niveles de calcio ni de fósforo, ni en su excreción urinaria. Los pacientes en tratamiento previo con calcitriol precisaron dosis mayores de paricalcitol. Cuando el paricalcitol se administra a pacientes tratados con cinacalcet, se observa un descenso significativo de la PTH con dosis de paricalcitol similar a pacientes sin cinacalcet.AbstractIntroductionSecondary hyperparathyroidism is highly prevalent in kidney transplant recipients, and commonly results in hypercalcaemia; an association to osteopenia and bone fractures has also been observed. Paricalcitol has proved effective to control secondary hyperparathyroidism in chronic kidney disease in both dialysed and non-dialysed patients, with a low hypercalcaemia incidence. Currently available experience on paricalcitol use in kidney transplant recipients is scarce. Our main aim was to show the effect of paricalcitol on mineral bone metabolism in kidney transplant recipients with secondary hyperparathyroidism.Material and methodsA retrospective multicentre study in kidney transplant recipients aged>18 years with a 12-month or longer post-transplantation course, stable renal function, having received paricalcitol for more than 12 months, with available clinical follow-up for a 24-month period.ResultsA total of 69 patients with a 120 ± 92-month post-transplantation course were included. Baseline creatinine was 2.2±0.9mg/dl y GFR-MDRD was 36±20ml/min/1.73m2. Paricalcitol doses were gradually increased during the study: baseline 3.8±1.9μg/week, 12 months 5.2±2.4μg/week; 24 months 6.0±2.9μg/week (P<.001). Serum PTH levels showed a significant fast decline: baseline 288±152 pg/ml; 6 months 226±184 pg/ml; 12 months 207±120; 24 months 193±119 pg/ml (P<.001). Reduction from baseline PTH was ≥30% in 42.4% of patients at 12 months y in 65.2% of patients at 24 months. Alkaline phosphatase showed a significant decrease in first 6 months followed by a plateau: baseline 92±50 IU/l; 6 months 85±36 IU/l, 12 months 81±39 IU/l (P<.001). Overall, no changes were observed in serum calcium and phosphorus, and in urine calcium excretion. PTH decline was larger in patients with higher baseline levels. Patients with lower baseline calcium levels showed significantly increased levels (mean increase was 0.5-0.6mg/dl) but still within normal range, whereas patients with baseline calcium>10mg/dl showed gradually decreasing levels. Fifteen (21.7%) patients had received prior calcitriol therapy. When shifted to paricalcitol, such patients required paricalcitol doses significantly larger than those not having received calcitriol. Paricalcitol was used concomitantly to cinacalcet in 11 patients with significant PTH reductions being achieved; clinical course was similar to other patients and paricalcitol doses were also similar.ConclusionsParicalcitol is an effective therapy for secondary hyperparathyroidism in kidney transplant recipients. Overall, no significant changes were observed in calcium and phosphorus levels or urinary excretion. Patients having previously received calcitriol required higher paricalcitol doses. When used in patients receiving cinacalcet, paricalcitol results in a significant PTH fall, with paricalcitol doses being similar to those used in patients not receiving cinacalcet

    Non-criteria obstetric antiphospholipid syndrome: how different is from Sidney criteria? A single-center study

    Get PDF
    This study aims to compare the demographic characteristics, clinical features, serology, and fetal-maternal outcomes between women with obstetric antiphospholipid syndrome (APS) and those with non-criteria (NC)-APS and seronegative (SN)-APS. Two-hundred and sixty-three women with APS obstetric morbidity ever pregnant were included. Of those, 66 met the APS classification criteria, 140 were NC-APS, and 57 were SN-APS. Patients with other autoimmune diseases were excluded. Adverse pregnancy outcomes (APO) included early pregnancy loss, fetal death, preeclampsia, abruptio placentae, and preterm birth. The mean age of the study group was 33.6 ± 5.3 years, and patients were followed up for 129.5 ± 81.9 months. In the NC-APS group, 31 (22.1%) did not fulfill clinical and serological criteria (Subgroup A), 49 (35%) did meet clinical but not serologic criteria (Subgroup B), and 60 (42.9%) fulfilled the serologic criteria but not the clinical ones (Subgroup C). The cardiovascular risk burden was higher in the APS group, due to a higher proportion of smoking. Patients with criteria APS received more intensive treatment than patients in the other study groups. The addition of standard of care (SoC) treatment significantly improved live birth and decreased APO in all groups. Significant clinical differences were observed between the study groups. However, when treated with SoC, fetal-maternal outcomes were similar, with a significant improvement in live births and a decrease in APO. Risk stratification in patients with obstetric morbidity associated with APS can help individualize their treatment

    Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease

    Full text link
    [EN] Silica mesoporous microparticles loaded with both rhodamine B fluorophore (S1) or hydrocortisone (S2), and capped with an olsalazine derivative, are prepared and fully characterized. Suspensions of Si and S2 in water at an acidic and a neutral pH show negligible dye/drug release, yet a notable delivery took place when the reducing agent sodium dithionite is added because of hydrolysis of an azo bond in the capping ensemble. Additionally, olsalazine fragmentation induced 5-aminosalicylic acid (5-ASA) release. In vitro digestion models show that S1 and S2 solids are suitable systems to specifically release a pharmaceutical agent in the colon. In vivo pharmacokinetic studies in rats show a preferential rhodamine B release from Si in the colon. Moreover, a model of ulcerative colitis is induced in rats by oral administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) solutions, which was also used to prove the efficacy of S2 for colitis treatment. The specific delivery of hydrocortisone and 5-ASA from S2 material to the colon tissue in injured rats markedly lowers the colon/body weight ratio and the clinical activity score. Histological studies showed a remarkable reduction in inflammation, as well as an intensive regeneration of the affected tissues.We thank the Generalitat Valenciana (Project PROMETE02018/024) and the Spanish Government (Projects AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R (MINECO/FEDER)) for support. A.H.T. thanks the Spanish MEC for his FPU fellowship. The authors also thank the support of the Electron Microscopy Service at the UPV. The SCSIE (of the Universitat de Valencia) is also gratefully acknowledged for all the equipment used. NMR spectra were measured at the U26 facility of ICTS "NANBIOSIS" at the Universitat de Valencia.Hernández Teruel, A.; Pérez-Esteve, É.; González-Álvarez, I.; González-Álvarez, M.; Costero Nieto, AM.; Ferri, D.; Gaviña, P.... (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics. 16(6):2418-2429. https://doi.org/10.1021/acs.molpharmaceut.9b00041S24182429166Baumgart, D. C., & Sandborn, W. J. (2012). Crohn’s disease. The Lancet, 380(9853), 1590-1605. doi:10.1016/s0140-6736(12)60026-9Pierik, M., Yang, H., Barmada, M. M., Cavanaugh, J. A., Annese, V., Brant, S. R., … Vlietinck, R. (2005). The IBD International Genetics Consortium Provides Further Evidence for Linkage to IBD4 and Shows Gene-Environment Interaction. Inflammatory Bowel Diseases, 11(1), 1-7. doi:10.1097/00054725-200501000-00001Loftus, E. V. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 126(6), 1504-1517. doi:10.1053/j.gastro.2004.01.063Lupp, C., Robertson, M. L., Wickham, M. E., Sekirov, I., Champion, O. L., Gaynor, E. C., & Finlay, B. B. (2007). Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host & Microbe, 2(2), 119-129. doi:10.1016/j.chom.2007.06.010Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., … Hibi, T. (2008). Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology, 298(5-6), 463-472. doi:10.1016/j.ijmm.2007.07.016Sokol, H., Seksik, P., Furet, J. P., Firmesse, O., Nion-Larmurier, I., Beaugerie, L., … Doré, J. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases, 15(8), 1183-1189. doi:10.1002/ibd.20903Friswell, M., Campbell, B., & Rhodes, J. (2010). The Role of Bacteria in the Pathogenesis of Inflammatory Bowel Disease. Gut and Liver, 4(3), 295-306. doi:10.5009/gnl.2010.4.3.295Qiu, X., Zhang, M., Yang, X., Hong, N., & Yu, C. (2013). Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. Journal of Crohn’s and Colitis, 7(11), e558-e568. doi:10.1016/j.crohns.2013.04.002Yu, C. G., & Huang, Q. (2013). Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease. Journal of Digestive Diseases, 14(10), 513-517. doi:10.1111/1751-2980.12087Kappelman, M. D., Rifas–Shiman, S. L., Porter, C. Q., Ollendorf, D. A., Sandler, R. S., Galanko, J. A., & Finkelstein, J. A. (2008). Direct Health Care Costs of Crohn’s Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology, 135(6), 1907-1913. doi:10.1053/j.gastro.2008.09.012Kappelman, M. D., Rifas–Shiman, S. L., Porter, C. Q., Ollendorf, D. A., Sandler, R. S., Galanko, J. A., & Finkelstein, J. A. (2008). Direct Health Care Costs of Crohn’s Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology, 135(6), 1907-1913. doi:10.1053/j.gastro.2008.09.012Rocchi, A., Benchimol, E. I., Bernstein, C. N., Bitton, A., Feagan, B., Panaccione, R., … Ghosh, S. (2012). Inflammatory Bowel Disease: A Canadian Burden of Illness Review. Canadian Journal of Gastroenterology, 26(11), 811-817. doi:10.1155/2012/984575Burisch, J., Jess, T., Martinato, M., & Lakatos, P. L. (2013). The burden of inflammatory bowel disease in Europe. Journal of Crohn’s and Colitis, 7(4), 322-337. doi:10.1016/j.crohns.2013.01.010Marchetti, M., & Liberato, N. L. (2014). Biological therapies in Crohn’s disease: are they cost-effective? A critical appraisal of model-based analyses. Expert Review of Pharmacoeconomics & Outcomes Research, 14(6), 815-824. doi:10.1586/14737167.2014.957682Park, S. J. (2014). Clinical characteristics and treatment of inflammatory bowel disease: A comparison of Eastern and Western perspectives. World Journal of Gastroenterology, 20(33), 11525. doi:10.3748/wjg.v20.i33.11525Ng, S. C., Tang, W., Ching, J. Y., Wong, M., Chow, C. M., Hui, A. J., … Chan, F. K. L. (2013). Incidence and Phenotype of Inflammatory Bowel Disease Based on Results From the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology, 145(1), 158-165.e2. doi:10.1053/j.gastro.2013.04.007Sood, A. (2003). Incidence and prevalence of ulcerative colitis in Punjab, North India. Gut, 52(11), 1587-1590. doi:10.1136/gut.52.11.1587Tozun, N., Atug, O., Imeryuz, N., Hamzaoglu, H. O., Tiftikci, A., Parlak, E., … Yurdaydin, C. (2009). Clinical Characteristics of Inflammatory Bowel Disease in Turkey. Journal of Clinical Gastroenterology, 43(1), 51-57. doi:10.1097/mcg.0b013e3181574636Victoria, C. R., Sassak, L. Y., & Nunes, H. R. de C. (2009). Incidence and prevalence rates of inflammatory bowel diseases, in midwestern of São Paulo State, Brazil. Arquivos de Gastroenterologia, 46(1), 20-25. doi:10.1590/s0004-28032009000100009Fakhoury, M., Al-Salami, H., Negrulj, R., & Mooranian, A. (2014). Inflammatory bowel disease: clinical aspects and treatments. Journal of Inflammation Research, 113. doi:10.2147/jir.s65979Mowat, C., Cole, A., Windsor, A., Ahmad, T., Arnott, I., … Driscoll, R. (2011). Guidelines for the management of inflammatory bowel disease in adults. Gut, 60(5), 571-607. doi:10.1136/gut.2010.224154Di Sario, A., Bendia, E., Schiadà, L., Sassaroli, P., & Benedetti, A. (2016). Biologic Drugs in Crohn’;s Disease and Ulcerative Colitis: Safety Profile. Current Drug Safety, 11(1), 55-61. doi:10.2174/157488631101160212171757Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028Lamprecht, A., Rodero Torres, H., Schäfer, U., & Lehr, C.-M. (2000). Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. Journal of Controlled Release, 69(3), 445-454. doi:10.1016/s0168-3659(00)00331-xTeruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jCabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Lunn, G. (2005). HPLC Methods for Recently Approved Pharmaceuticals. doi:10.1002/0471711683Navarro, C., González-Álvarez, I., González-Álvarez, M., Manku, M., Merino, V., Casabó, V. G., & Bermejo, M. (2011). Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. European Journal of Pharmaceutical Sciences, 42(3), 290-299. doi:10.1016/j.ejps.2010.12.005Mura, C., Nácher, A., Merino, V., Merino-Sanjuan, M., Carda, C., Ruiz, A., … Diez-Sales, O. (2011). N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. International Journal of Pharmaceutics. doi:10.1016/j.ijpharm.2011.06.025Sandborn, W. J., & Hanauer, S. B. (2002). The pharmacokinetic profiles of oral mesalazine formulations and mesalazine pro-drugs used in the management of ulcerative colitis. Alimentary Pharmacology & Therapeutics, 17(1), 29-42. doi:10.1046/j.1365-2036.2003.01408.xMladenovska, K., Raicki, R. S., Janevik, E. I., Ristoski, T., Pavlova, M. J., Kavrakovski, Z., … Goracinova, K. (2007). Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 342(1-2), 124-136. doi:10.1016/j.ijpharm.2007.05.028Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an In Vitro Digestion Model for Estimating the Bioaccessibility of Soil Contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 281-287. doi:10.1007/s00244-002-1278-0Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007Tozaki, H., Fujita, T., Komoike, J., Kim, S.-I., Terashima, H., Muranishi, S., … Yamamoto, A. (1999). Colon-specific Delivery of Budesonide with Azopolymer-coated Pellets: Therapeutic Effects of Budesonide with a Novel Dosage Form against 2,4,6-Trinitrobenzenesulphonic Acid-induced Colitis in Rats. Journal of Pharmacy and Pharmacology, 51(3), 257-261. doi:10.1211/0022357991772420Tozaki, H., Odoriba, T., Okada, N., Fujita, T., Terabe, A., Suzuki, T., … Yamamoto, A. (2002). Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. Journal of Controlled Release, 82(1), 51-61. doi:10.1016/s0168-3659(02)00084-6Yoo, J.-W., Naeem, M., Cao, J., Choi, M., Kim, W., Moon, H. R., … Jung, Y. (2015). Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. International Journal of Nanomedicine, 4565. doi:10.2147/ijn.s8781
    corecore