128 research outputs found

    Preparation and characterization of stable methyl myristate−in−water nanoemulsions as advanced working fluids for cooling systems

    Get PDF
    Phase change material emulsions (PCME) have gained increasing scientific interest due to their potential to enhance the storage capability of thermal facilities. Herein we present the design and characterization of oil−in−water (O/W) nanoemulsions by employing a dispersed phase mixture (2–12 wt%) enriched in methyl myristate as phase change material. The emulsifier and dispersed phase compositions were optimized based on dynamic light scattering and calorimetric analyses. A two−surfactant formulation composed of sodium dodecyl sulfate and BrijTM S2 (20:49 in weight) was selected to produce stable colloidal dispersions of a methyl stearate:n–hexadecane:methyl myristate mixture (at a mass proportion of 1:3:36) in water. No phase separation or significant growth in emulsified droplet size was detected under storage conditions or when the slurries were subjected to different heating−cooling cycles. The melting/crystallization transitions, rheological behavior, thermal conductivity and density of optimized nanoemulsions were experimentally investigated in order to further understand how the concentration and physical state of suspended droplets may influence those thermal and physical properties. According to differential scanning calorimetry studies, slurries showed moderate subcooling degrees (∼3 °C), even though their solid−liquid transitions extended over a slightly wider range of temperatures than the same mixture used as the dispersed phase but in bulk−form. The shear−thinning character observed for developed nanoemulsions at low temperatures disappeared with the melting of suspended droplets. Considering an operating temperature interval of 15 °C around melting−crystallization phase changes, the 12 wt% optimized suspension presented a storage capacity 18 % higher than that of water under the same conditions. Furthermore, thermal reliability tests verified that phase change characteristics did not significantly changed after 8 months of storage and throughout 500 thermal cycles.Agencia Estatal de Investigación | Ref. PID2020-112846RB-C21Agencia Estatal de Investigación | Ref. PID2022-136443OB-I00Agencia Estatal de Investigación | Ref. IJC2020-043779-

    Revisiting the Mechanism of the Meso-to-α Transition of Isotactic Polypropylene and Ethylene-Propylene Random Copolymers

    Get PDF
    In this work, we have conducted in situ simultaneous small- and wide-angle X-ray scattering and Raman spectroscopy experiments to investigate the fundamental differences in the mechanism of the mesomorphic to α phase transition of the isotactic polypropylene homopolymer and the random ethylene-propylene copolymer. Via quantitative analysis of the results coming from the three techniques, we found that in the homopolymer, chain interlock and chain extension occur during the transition. However, these processes are not necessary for the transition to occur. Indeed, the presence of randomly distributed ethylene co-units hinders the chain interlock process in the early stages of the phase transition (T > 60 °C) and suppresses the chain elongation process at the later stages (T > 90 °C). Consequently, the mesomorphic to α-phase transition in the random copolymer occurs with inclusion of the ethylene co-units inside the crystal lattice, causing increased lateral interchain distance and larger crystalline sizes. Our results show how differences exist in the way solid phase transitions occur at the molecular scale when co-monomers are included into the macromolecular chains, leading to a better understanding of the thermal behavior of semi-crystalline polymers

    In situ Rheo-GISANS of triblock copolymers : gelation and shear effects on quasi-crystalline structures at interfaces

    Get PDF
    The behaviour of polymeric systems at surfaces and under flow is extremely important in many applications, ranging from drug delivery to lubrication. We have studied a model triblock copolymer in deuterated water combining in situ rheology and grazing incidence small angle neutron scattering. Several thermotropic phases appear as a function of the temperature, including a bicontinuous phase not present in the bulk. Moreover, gelation can occur following a different route depending on the concentration. We show that shearing can be used to monitor the structural integrity of the micellar systems and in some cases as a tool for modifying the thermotropic phases: an fcc (face centred cubic) phase is sheared into a hcp (hexagonally close packed) phase, and is then recovered by cycling the temperature

    Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterization

    Get PDF
    The microstructure of products manufactured by selective laser sintering (SLS) is known to be highly dependent on various process and material parameters. The latter thus also affect the final part properties. While most work has focused on ex-situ characterization of the printed parts, little is known about the time-dependent microstructure development during sintering. In this work, we present direct observations of the microstructural evolution during laser sintering of polyamide 12 (PA12) particle doublets by in-situ synchrotron wide angle X-ray diffraction (WAXD), using our in-house developed laser sintering setup. Simultaneously, the neck growth between the particles and the temperature are captured via optical and infrared microscopy. We show that isothermal crystallization experiments under quiescent conditions are not sufficient to describe crystallization in a non-isothermal process like SLS. The enhanced crystallization kinetics in small particles suggests that both temperature and flow play a role. This finding was corroborated by the critical Weissenberg numbers estimated from rheological reptation and Rouse time scales. Furthermore, a microstructure survey has been carried out by microtoming thin slices of the sintered doublets. Both optical and atomic force microscopy reveal significant differences in the crystalline structure of the laser-affected zone as compared to the un-sintered region.</p

    Investigation of the Nanoscale Morphology in Industrially Relevant Clearcoats of Waterborne Polymer Colloids by Means of Variable-Angle-Grazing Incidence Small-Angle X-ray Scattering

    Get PDF
    Soft polymer colloidal water suspensions are extremely important formulations for industrial applications such as water-based environmental-friendly coatings, paints, and adhesives. Homogeneity of the final coating at the micrometer and nanoscale is a crucial factor for optimal coating performance, such as barrier properties against solvent permeation. Here, we investigated the remnant nanostructure in slot-die-coated micrometer-sized thick clear coating films (clearcoats) of three different waterborne polymer colloids (pure soft, pure hard, and soft/hard multiphase), commonly utilized as primers in paint formulations [Mader et al. Prog. Org. Coat. 2011, 71, 123-135], using variable-angle grazing incidence small-angle X-ray scattering (GISAXS) complemented with cross-sectional atomic force microscopy (cs-AFM). After complete macroscopic drying, the coating films exhibit the presence of residual nanostructure with characteristic distance (d*) smaller than the original particle size and even smaller

    Data Mining of Polymer Phase Transitions upon Temperature Changes by Small and Wide-Angle X-ray Scattering Combined with Raman Spectroscopy

    Get PDF
    The complex physical transformations of polymers upon external thermodynamic changes are related to the molecular length of the polymer and its associated multifaceted energetic balance. The understanding of subtle transitions or multistep phase transformation requires real-time phenomenological studies using a multi-technique approach that covers several length-scales and chemical states. A combination of X-ray scattering techniques with Raman spectroscopy and Differential Scanning Calorimetry was conducted to correlate the structural changes from the conformational chain to the polymer crystal and mesoscale organization. Current research applications and the experimental combination of Raman spectroscopy with simultaneous SAXS/WAXS measurements coupled to a DSC is discussed. In particular, we show that in order to obtain the maximum benefit from simultaneously obtained high-quality data sets from different techniques, one should look beyond traditional analysis techniques and instead apply multivariate analysis. Data mining strategies can be applied to develop methods to control polymer processing in an industrial context. Crystallization studies of a PVDF blend with a fluoroelastomer, known to feature complex phase transitions, were used to validate the combined approach and further analyzed by MVA

    Influence of reduced graphene oxide on the rheological response and chain orientation on shear deformation of high density polyethylene

    Get PDF
    © 2016 Elsevier Ltd. All rights reserved. The rheological response of high density polyethylene/reduced graphene oxide nanoplatelets (HDPE/rGON) composites, and the influence of rGON on chain orientation and crystallization behavior after shear flow are investigated. Melt rheology reveals the presence of strong interaction between polymer chains and the filler. Above 4.0 wt % of the filler concentration, the terminal region of frequency sweep shows changes in the linear viscoelastic properties of the composites. In particular, at these high concentrations the cross-over frequency at which the transition from predominantly elastic to viscous behavior occurs significantly shifts to lower values, indicating the formation of a solid-like percolated network. A drop in G′ at high frequency (100 rad/s) is observed in the presence of the filler, and the storage modulus shows minima at filler concentration between 2.0 and 4.0 wt %. The influence of chain-filler interaction on chain orientation, and subsequent crystallization behavior after application of shear is followed by time resolved WAXD/SAXS. The orientation of the crystalline domains was quantified by the Herman's orientation factor that supports the presence of strong chain-filler interaction. The Deborah number of reptation and retraction suggests that during the applied non-linear shear, polymer chains in the composites experience mild stretch that is not significant enough to induce crystallization at the high temperature (136 °C). However, restriction imposed by the filler on the chain mobility is pronounced enough to preserve oriented state that causes anisotropy in crystallization on cooling. The enhanced orientation with increasing filler content is conclusively attributed to the strong chain-filler interaction
    corecore