348 research outputs found

    A first order phase transition mechanism underlies protein aggregation in mammalian cells

    Get PDF
    The formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates

    Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1

    Get PDF
    The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of polyQ aggregates, whereas ssa1, ssa2, and ydj1–151 mutations inhibited expansion of aggregates. The latter three mutants strongly suppressed the polyQ toxicity. Spontaneous mutants with suppressed aggregation appeared with high frequency, and in all of them the toxicity was relieved. Aggregation defects in these mutants and in sis1–85 were not complemented in the cross to the hsp104 mutant, demonstrating an unusual type of inheritance. Since Hsp104 is required for prion maintenance in yeast, this suggested a role for prions in polyQ aggregation and toxicity. We screened a set of deletions of nonessential genes coding for known prions and related proteins and found that deletion of the RNQ1 gene specifically suppressed aggregation and toxicity of polyQ. Curing of the prion form of Rnq1 from wild-type cells dramatically suppressed both aggregation and toxicity of polyQ. We concluded that aggregation of polyQ is critical for its toxicity and that Rnq1 in its prion conformation plays an essential role in polyQ aggregation leading to the toxicity

    Hsp70–Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation

    Get PDF
    Protein abnormalities in cells are the cause of major pathologies, and a number of adaptive responses have evolved to relieve the toxicity of misfolded polypeptides. To trigger these responses, cells must detect the buildup of aberrant proteins which often associate with proteasome failure, but the sensing mechanism is poorly understood. Here we demonstrate that this mechanism involves the heat shock protein 70–Bcl-2–associated athanogene 3 (Hsp70–Bag3) complex, which upon proteasome suppression responds to the accumulation of defective ribosomal products, preferentially recognizing the stalled polypeptides. Components of the ribosome quality control system LTN1 and VCP and the ribosome-associated chaperone NAC are necessary for the interaction of these species with the Hsp70–Bag3 complex. This complex regulates important signaling pathways, including the Hippo pathway effectors LATS1/2 and the p38 and JNK stress kinases. Furthermore, under proteotoxic stress Hsp70–Bag3–LATS1/2 signaling regulates protein aggregation. We established that the regulated step was the emergence and growth of abnormal protein oligo-mers containing only a few molecules, indicating that aggregation is regulated at very early stages. The Hsp70–Bag3 complex therefore functions as an important signaling node that senses proteo-toxicity and triggers multiple pathways that control cell physiology, including activation of protein aggregation

    Yeast Prions: Protein Aggregation Is Not Enough

    Get PDF
    Although many proteins -- both damaged and normal -- have a tendency to aggregate, only some are capable of dividing and propagating. What does it take to turn a protein aggregate into an infectious prion

    Heat shock protein-90 dampens and directs signaling stimulated by insulin-like growth factor-1 and insulin

    Get PDF
    AbstractHeat shock protein-90 (Hsp90) buffers cells from genetic mutations and environmental stresses. To test if this capability reflects a normal physiological function of Hsp90 to buffer cellular signals, the effects of Hsp90 inhibition were measured on activation of Akt. Inhibition of Hsp90 with geldanamycin amplified Akt phosphorylation induced by insulin-like growth factor-1 (IGF-1) or insulin, indicating that Hsp90 normally buffers these signals. Furthermore, with IGF-1 stimulation Hsp90 inhibition increased p38 activation, produced additive activation of p90RSK, and slightly increased the duration of ERK1/2 activation. Hsp90 dampened Akt signaling by facilitating phosphatase-mediated dephosphorylation of Akt. Thus, Hsp90 not only buffers the cellular effects of mutations and stresses, but also buffers the magnitude and duration of activation of proliferative and survival-promoting signaling responses

    Amyloid-Mediated Sequestration of Essential Proteins Contributes to Mutant Huntingtin Toxicity in Yeast

    Get PDF
    BACKGROUND: Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain. PRINCIPAL FINDINGS: Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively: the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast. CONCLUSIONS: The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity

    Inhibition of Influenza M2-Induced Cell Death Alleviates Its Negative Contribution to Vaccination Efficiency

    Get PDF
    The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1) was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed

    An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component

    Get PDF
    Intrinsically disordered proteins play causative roles in many human diseases. Their overexpression is toxic in many organisms, but the causes of toxicity are opaque. In this paper, we exploit yeast technologies to determine the root of toxicity for one such protein, the yeast prion Rnq1. This protein is profoundly toxic when overexpressed but only in cells carrying the endogenous Rnq1 protein in its [RNQ[superscript +]] prion (amyloid) conformation. Surprisingly, toxicity was not caused by general proteotoxic stress. Rather, it involved a highly specific mitotic arrest mediated by the Mad2 cell cycle checkpoint. Monopolar spindles accumulated as a result of defective duplication of the yeast centrosome (spindle pole body [SPB]). This arose from selective Rnq1-mediated sequestration of the core SPB component Spc42 in the insoluble protein deposit (IPOD). Rnq1 does not normally participate in spindle pole dynamics, but it does assemble at the IPOD when aggregated. Our work illustrates how the promiscuous interactions of an intrinsically disordered protein can produce highly specific cellular toxicities through illicit, yet highly specific, interactions with the proteome
    • …
    corecore